Mitigation of caffeine micropollutants in wastewater through Ag-doped ZnO photocatalyst: mechanism and environmental impacts.

Environ Geochem Health

Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam.

Published: April 2024

Micropollutants, such as caffeine (M-CF), pose a significant threat to ecosystems and human health through water and food sources. The utilization of metal oxide-based photocatalysts has proven to be an effective treatment method for the removal of organic pollutants. This study explores the efficacy of Ag-doped ZnO (Ag/ZnO) for removing M-CF from wastewater. The characterization of Ag/ZnO underscores the crucial role of band gap energy in the photocatalytic degradation process. This parameter influences the separation of electrons and holes (e/h) and the generation of reactive radicals. Under solar light, Ag/ZnO demonstrated markedly superior photocatalytic activity, achieving an impressive degradation efficiency of approximately 93.4%, in stark contrast to the 53.2% occurred by ZnO. Moreover, Ag/ZnO exhibited a remarkable degradation efficiency of M-CF in wastewater, reaching 83.5%. A key advantage of Ag/ZnO lies in its potential for recovery and reuse in subsequent treatments, contributing to a reduction in operational costs for industrial wastewater treatment. Impressively, even after five cycles, Ag/ZnO maintained a noteworthy photodegradation rate of M-CF at 78.6%. These results strongly suggest that Ag/ZnO presents a promising solution for the removal of micropollutants in wastewater, with potential scalability for industrial and large-scale applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10653-024-01952-1DOI Listing

Publication Analysis

Top Keywords

micropollutants wastewater
8
ag-doped zno
8
zno ag/zno
8
m-cf wastewater
8
degradation efficiency
8
ag/zno
7
wastewater
5
mitigation caffeine
4
caffeine micropollutants
4
wastewater ag-doped
4

Similar Publications

Pharmaceuticals and per- and polyfluoroalkyl substances (PFAS) are persistent organic micropollutants (OMPs) posing environmental and health risks due to their bioaccumulative nature and potential toxicity. These OMPs spread to the environment due to the extensive use in today's society. Conventional wastewater treatment plants (WWTPs) are not designed to effectively remove these contaminants, making WWTPs an important pathway, especially for pharmaceuticals, to the aquatic environment.

View Article and Find Full Text PDF

Investigating the application of novel filling materials in Vertical Subsurface Flow Constructed Wetlands for the treatment of anaerobic effluents originating from domestic wastewater.

J Environ Manage

January 2025

Sanitary Engineering Laboratory, Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., Zographou Campus, 15773, Athens, Greece.

Vertical subsurface flow constructed wetlands (VSSF CWs) were employed to investigate the use of biochar that could be produced with local agricultural biomass through pyrolysis, recycled glass from local recycling companies and gel beads with decreased packing volume and shipping cost as substrate alternatives to sand. The materials were assessed in terms of granulometry, porosity, adsorption capacity and hydraulic conductivity and were used for the treatment of an upflow anaerobic sludge blanket (UASB) reactor, treating domestic wastewater, effluent. Granulometry was a major factor impacting TSS removal that ranged from 81% ± 10% to 97% ± 2%.

View Article and Find Full Text PDF

Ozone-based advanced oxidation processes in water treatment: recent advances, challenges, and perspective.

Environ Sci Pollut Res Int

January 2025

Bio-Microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran.

Water pollution, driven by a variety of enduring contaminants, poses considerable threats to ecosystems, human health, and biodiversity, highlighting the urgent need for innovative and sustainable treatment approaches. Ozone-based advanced oxidation processes (AOPs) have demonstrated significant efficacy in breaking down stubborn pollutants, such as organic micropollutants and pathogens, that are not easily addressed by traditional treatment techniques. This review offers an in-depth analysis of ozonation mechanisms, covering both the direct oxidation by ozone and the indirect reactions facilitated by hydroxyl radicals, emphasizing their effectiveness and adaptability across various wastewater matrices.

View Article and Find Full Text PDF

This study investigated the applicability of a protein-like fluorescence sensor for wastewater quality monitoring. Several wastewater matrices, including raw, primary, secondary and tertiary effluents from three different wastewater treatment plants were used. Furthermore, the sensor was tested for the monitoring of quaternary effluent in a pilot scale plant installed downstream of a water reuse facility.

View Article and Find Full Text PDF

In recent years, oxidoreductase enzymes such as laccases have received considerable attention for their ability to degrade and eliminate organic micropollutants from contaminated water in a process known as enzyme-based wastewater treatment. Thus, methods to produce high laccase activity in water are a point of focus, with white-rot fungi being highlighted as a tool in this context. This study, therefore, explored the applied approach of direct addition of mushroom spawn of the white-rot fungi Pleurotus ostreatus into water and its potential for laccase production under different conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!