Transcriptome analysis of Kluyveromyces marxianus under succinic acid stress and development of robust strains.

Appl Microbiol Biotechnol

Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.

Published: April 2024

Kluyveromyces marxianus has become an attractive non-conventional yeast cell factory due to its advantageous properties such as high thermal tolerance and rapid growth. Succinic acid (SA) is an important platform molecule that has been applied in various industries such as food, material, cosmetics, and pharmaceuticals. SA bioproduction may be compromised by its toxicity. Besides, metabolite-responsive promoters are known to be important for dynamic control of gene transcription. Therefore, studies on global gene transcription under various SA concentrations are of great importance. Here, comparative transcriptome changes of K. marxianus exposed to various concentrations of SA were analyzed. Enrichment and analysis of gene clusters revealed repression of the tricarboxylic acid cycle and glyoxylate cycle, also activation of the glycolysis pathway and genes related to ergosterol synthesis. Based on the analyses, potential SA-responsive promoters were investigated, among which the promoter strength of IMTCP2 and KLMA_50231 increased 43.4% and 154.7% in response to 15 g/L SA. In addition, overexpression of the transcription factors Gcr1, Upc2, and Ndt80 significantly increased growth under SA stress. Our results benefit understanding SA toxicity mechanisms and the development of robust yeast for organic acid production. KEY POINTS: • Global gene transcription of K. marxianus is changed by succinic acid (SA) • Promoter activities of IMTCP2 and KLMA_50123 are regulated by SA • Overexpression of Gcr1, Upc2, and Ndt80 enhanced SA tolerance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11003901PMC
http://dx.doi.org/10.1007/s00253-024-13097-3DOI Listing

Publication Analysis

Top Keywords

succinic acid
12
gene transcription
12
kluyveromyces marxianus
8
development robust
8
global gene
8
gcr1 upc2
8
upc2 ndt80
8
acid
5
transcriptome analysis
4
analysis kluyveromyces
4

Similar Publications

Unlabelled: Seed storability is a crucial agronomic trait and indispensable for the safe storage of rice seeds and grains. Nevertheless, the metabolite mechanisms governing rice seed storability under natural conditions are still poorly understood.

Methods: Therefore, the seed storage tolerance of global rice core germplasms stored for two years under natural aging conditions were identified, and two extreme groups with different seed storabilities from the rice group were analyzed using the UPLC-MS/MS metabolomic strategy.

View Article and Find Full Text PDF

In this study, octenyl succinic acid sodium starch (OSAS) decorated with chitosan (CS) of different molecular weights (50-150 kDa) and concentrations (10-30 mg/mL) was used to stabilize an emulsion coencapsulating with vitamin A (V) and vitamin D (V). The effect of CS decoration on the thermal and UV stability of the emulsion, as well as the underlying mechanism, was elucidated. The incorporation of CS increased the retention rates of V and V by 11.

View Article and Find Full Text PDF

The quality and flavor of Liuyang Douchi are usually closely related to the metabolites compostion. This work described the metabolic profiles of Liuyang douchi during fermentation. Obvious hydrolysis of carbohydrates, proteins and slight lipids degradation were observed.

View Article and Find Full Text PDF

Purpose: The landiolol and organ failure in patients with septic shock (STRESS-L study) included a pre-planned sub-study to assess the effect of landiolol treatment on inflammatory and metabolomic markers.

Methods: Samples collected from 91 patients randomised to STRESS-L were profiled for immune and metabolomic markers. A panel of pro- and anti-inflammatory cytokines were measured through commercially acquired multiplex Luminex assays and statistically analysed by individual and cluster-level analysis (patient).

View Article and Find Full Text PDF

Utilization of acid whey and oat pomace in succinic acid fermentation.

N Biotechnol

January 2025

Institute for Food and Environmental Research (ILU), Bad Belzig, Germany; Leuphana University Lüneburg, Institute of Sustainable Chemistry, Lüneburg, Germany. Electronic address:

of this study was to investigate the by-products acid whey and oat pomace as nutrient sources for succinic acid production by Actinobacillus succinogenes. Both by-products provide carbon sources in form of glucose and/or lactose without any pre-treatment. Yields of succinic acid per g total sugars consumed after 24 h were between 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!