A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transient Ruddlesden-Popper-Type Defects and Their Influence on Grain Growth and Properties of Lithium Lanthanum Titanate Solid Electrolyte. | LitMetric

Lithium lanthanum titanate (LLTO) perovskite is one of the most promising electrolytes for all-solid-state batteries, but its performance is limited by the presence of grain boundaries (GBs). The fraction of GBs can be significantly reduced by the preparation of coarse-grained LLTO ceramics. In this work, we describe an alternative approach to the fabrication of ceramics with large LLTO grains based on self-seeded grain growth. In compositions with the starting stoichiometry for the LiLaTiO phase and with a high excess addition of Li (Li:La:Ti = 11:15:25), microstructure development starts with the formation of the layered RP-type LiLaTiO phase. Grains with many RP-type defects initially develop into large platelets with thicknesses of up to 10 μm and lengths over 100 μm. Microstructure development continues with the crystallization of LLTO perovskite, epitaxially on the platelets and as smaller grains with thinner in-grain RP-lamellae. Theoretical calculations confirmed that the formation of RP-type sequences is energetically favored and precedes the formation of the LLTO perovskite phase. At around 1250 °C, the RP-type sequences become thermally unstable and gradually recrystallize to LLTO via the ionic exchange between the Li-rich RP-layers and the neighboring Ti and La layers as shown by quantitative HAADF-STEM. At higher sintering temperatures, LLTO grains become free of RP-type defects and the small grains recrystallize onto the large platelike seed grains via Ostwald ripening. The final microstructure is coarse-grained LLTO with total ionic conductivity in the range of 1 × 10 S/cm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11044694PMC
http://dx.doi.org/10.1021/acsnano.4c00706DOI Listing

Publication Analysis

Top Keywords

llto perovskite
12
grain growth
8
lithium lanthanum
8
lanthanum titanate
8
llto
8
coarse-grained llto
8
llto grains
8
lilatio phase
8
microstructure development
8
rp-type defects
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!