AI Article Synopsis

  • The text discusses a specific bacterium that can thrive in stressful conditions and switch between being a soil bacterium and a pathogen in mammals.
  • It emphasizes the importance of two-component signaling systems (TCSs), which help the bacterium sense environmental changes and respond by activating certain genes.
  • The review highlights the challenges in identifying the exact stimuli that trigger TCS responses and points to ongoing research into the gene networks linked to these systems, which may reveal useful insights into stress resistance and pathogenesis.

Article Abstract

is well recognized for both its broad resistance to stress conditions and its ability to transition from a soil bacterium to an intracellular pathogen of mammalian hosts. The bacterium's impressive ability to adapt to changing environments and conditions requires the rapid sensing of environmental cues and the coordinated response of gene products that enable bacterial growth and survival. Two-component signaling systems (TCSs) have been long recognized for their ability to detect environmental stimuli and transmit those signals into transcriptional responses; however, often the precise nature of the stimulus triggering TCS responses can be challenging to define. has up to 16 TCSs that have been recognized based on homology and included in this list are several whose functions remain poorly described. This review highlights the current understanding of the breadth and scope of TCS as relates to stress resistance and pathogenesis. Precise signals still often remain elusive, but the gene networks associated with TCSs are providing clues into possible functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11003226PMC
http://dx.doi.org/10.1128/iai.00345-23DOI Listing

Publication Analysis

Top Keywords

two-component signaling
8
signaling systems
8
revisiting friends
4
friends updates
4
updates role
4
role two-component
4
systems survival
4
survival pathogenesis
4
pathogenesis well
4
well recognized
4

Similar Publications

Unlabelled: Bacterial genomic mutations in have been detected in isolated resistant clinical strains, yet their mechanistic effect on the development of antimicrobial resistance remains unclear. The resistance-associated regulatory systems acquire adaptive mutations under stress conditions that may lead to a gain of function effect and contribute to the resistance phenotype. Here, we investigate the effect of a single-point mutation (T331I) in VraS histidine kinase, part of the VraSR two-component system in VraSR senses and responds to environmental stress signals by upregulating gene expression for cell wall synthesis.

View Article and Find Full Text PDF

Autoinducer-2 enhances the defense of against oxidative stress and DNA damage by modulation of c-di-GMP signaling via a two-component system.

mBio

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.

As a universal language across the bacterial kingdom, the quorum sensing signal autoinducer-2 (AI-2) can coordinate many bacterial group behaviors. However, unknown AI-2 receptors in bacteria may be more than what has been discovered so far, and there are still many unknown functions for this signal waiting to be explored. Here, we have identified a membrane-bound histidine kinase of the pathogenic bacterium , AsrK, as a receptor that specifically detects AI-2 under low boron conditions.

View Article and Find Full Text PDF

: Current perspectives on molecular pathogenesis and virulence.

Cell Surf

June 2025

Department of Biology, College of Natural and Computational Science, Mekdela Amba University, P.O. Box 32, Tulu Awuliya, Ethiopia.

has evolved a sophisticated regulatory system to control its virulence. One of the main roles of this interconnected network is to sense and respond to diverse environmental signals by altering the synthesis of virulence components required for survival in the host, including cell surface adhesins, extracellular enzymes and toxins. The accessory gene regulator (agr), a quorum sensing system that detects the local concentration of a cyclic peptide signaling molecule, is one of the well-studied of these .

View Article and Find Full Text PDF

Bacterial Shedu immune nucleases share a common enzymatic core regulated by diverse sensor domains.

Mol Cell

December 2024

Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA. Electronic address:

Prokaryotes possess diverse anti-bacteriophage immune systems, including the single-protein Shedu nuclease. Here, we reveal the structural basis for activation of Bacillus cereus Shedu. Two cryoelectron microscopy structures of Shedu show that it switches between inactive and active states through conformational changes affecting active-site architecture, which are controlled by the protein's N-terminal domain (NTD).

View Article and Find Full Text PDF
Article Synopsis
  • Signal transduction is key for communication and response in microbial communities, allowing them to adapt to environmental changes and establish structures for collective behaviors.
  • Microbial communication occurs through methods like quorum sensing, biofilm formation, and chemotaxis, which help coordinate activities, enhance resource use, and improve resilience against stress.
  • Understanding these signaling processes, especially in synthetic microbial consortia, has important implications for biotechnology, including biosensors, biodegradation, and waste management.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!