Aerosol-assisted chemical vapor deposition (AACVD) was used to deposit highly transparent and conductive titanium or fluorine-doped and titanium-fluorine co-doped ZnO thin films on glass substrate at 450 °C. All films were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), UV-Vis spectroscopy, scanning electron spectroscopy (SEM), and four-point probe. The films were 600-680 nm thick, crystalline, and highly transparent (80-87 %). The co-doped film consisted of 0.70 at % titanium and 1 at % fluorine, and displayed a charger carrier mobility, charge carrier concentration, and a minimum resistivity of 8.4 cm V s, 3.97×10 cm, and 1.69×10 Ω cm, respectively. A band gap of 3.6 eV was observed for the co-doped film. Compared to the undoped and singly doped films, the co-doped film displayed a notably higher structure morphology (more homogenous grains with well-defined boundaries) suitable for transparent conducting oxide applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cplu.202400073 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!