A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing the Thermal Conductivity of Epoxy Composites via Constructing Oriented ZnO Nanowire-Decorated Carbon Fibers Networks. | LitMetric

With the miniaturization and high integration of electronic devices, high-performance thermally conductive composites have received increasing attention. The construction of hierarchical structures is an effective strategy to reduce interfacial thermal resistance and enhance composite thermal conductivity. In this study, by decorating carbon fibers (CF) with needle-like ZnO nanowires, hierarchical hybrid fillers (CF@ZnO) were rationally designed and synthesized using the hydrothermal method, which was further used to construct oriented aligned filler networks via the simple freeze-casting process. Subsequently, epoxy (EP)-based composites were prepared using the vacuum impregnation method. Compared with the pure CF, the CF@ZnO hybrid fillers led to a significant increase in thermal conductivity, which was mainly due to the fact that the ZnO nanowires could act as bridging links between CF to increase more thermally conductive pathways, which in turn reduced interfacial thermal resistance. In addition, the introduction of CF@ZnO fillers was also beneficial in improving the thermal stability of the EP-based composites, which was favorable for practical thermal management applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10856057PMC
http://dx.doi.org/10.3390/ma17030649DOI Listing

Publication Analysis

Top Keywords

thermal conductivity
12
carbon fibers
8
thermally conductive
8
interfacial thermal
8
thermal resistance
8
zno nanowires
8
hybrid fillers
8
ep-based composites
8
thermal
6
enhancing thermal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!