A Multifunctional Cementitious Composite for Pavement Subgrade.

Materials (Basel)

Center for Microelectromechanical Systems (CMEMS-UMinho), Department of Industrial Electronics, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal.

Published: January 2024

Premature failure and degradation of layers are the main problems for transportation infrastructure. Addressing these issues necessitates implementing structural health monitoring (SHM) for pavement construction layers. To this end, this research investigated the stress/strain and damage detection capabilities of a self-sensing cementitious composite developed for potential utilization in the construction of an intelligent subgrade layer. The prepared self-sensing cementitious composite consisted of 10% cement and hybrid conductive fillers, including multiwalled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) in sand. Initial findings reveal that the electrical resistivity of the composite is significantly affected by the concentration of MWCNTs/GNPs, with a minimum concentration of more than 0.5% needed to achieve a responsive cementitious composite. Moreover, the piezoresistive analysis indicates that an increase in the concentration of MWCNTs/GNPs and stress levels leads to an improvement in the stress/strain-sensing performance. When the self-sensing cementitious composite is subjected to equivalent stress levels, variations in the fractional changes in resistivity (FCR) exhibit an increasing trend with decreasing resilient modulus, stemming from a decrease in stiffness due to the increased concentration of MWCNTs/GNPs. Additionally, the electrochemical impedance spectroscopy (EIS) analysis demonstrates a contraction for the Nyquist plots under compressive ramp loading prior to failure, followed by the expansion of these curves post-failure. Scanning electron microscopy (SEM) images visually showcase the bridging effects of MWCNTs and the filling effects of GNPs within the composite structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10856306PMC
http://dx.doi.org/10.3390/ma17030621DOI Listing

Publication Analysis

Top Keywords

cementitious composite
20
self-sensing cementitious
12
concentration mwcnts/gnps
12
stress levels
8
composite
7
multifunctional cementitious
4
composite pavement
4
pavement subgrade
4
subgrade premature
4
premature failure
4

Similar Publications

Alkali and sulfate effects on mechanical properties and microscopic mechanisms of slag and fly ash geopolymers.

Sci Rep

January 2025

College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, People's Republic of China.

Aiming at the problem that it is difficult to realize low-cost, high-performance and large-scale utilization of cementitious materials prepared from bulk solid wastes, this paper constructs a set of composite cementitious system based on alkaline activation of slag and fly ash (FA) by calcium carbide slag (CCS) and synergistic activation of sodium sulfate (NaSO) as a chemical dopant. The influence of factors such as solid waste type, mixing ratio, and NaSO content on the mechanical properties of composite cementitious systems was investigated by assessing compressive strength and analyzing microstructure using XRD, SEM-EDS, and FTIR. The test results indicate that CCS and NaSO exert significant influences on the strength of the composite cementitious system.

View Article and Find Full Text PDF

With 3D printing technology, fiber-reinforced polymer composites can be printed with radical shapes and properties, resulting in varied mechanical performances. Their high strength, light weight, and corrosion resistance are already advantages that make them viable for physical civil infrastructure. It is important to understand these composites' behavior when used in concrete, as their association can impact debonding failures and overall structural performance.

View Article and Find Full Text PDF

Effective recycling and utilization of waste glass is a critical issue that urgently needs to be addressed. This study aims to explore the feasibility of using ground waste glass powder (particle size ≤ 75 μm) as a supplementary cementitious material to partially replace cement in the preparation of low-carbon and environmentally friendly grouting materials. The research systematically evaluates the impact of waste glass powder (WGP) on the fresh properties (particularly the stability and rheological characteristics) of cement-based grouting materials under various conditions, including WGP content (0-40%), the addition of NaOH activator (NaO content of 4%) or not, and water-solid ratio (/ 0.

View Article and Find Full Text PDF

Sustainable Management of Photovoltaic Waste Through Recycling and Material Use in the Construction Industry.

Materials (Basel)

January 2025

Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kracow, Poland.

The rapid expansion of photovoltaic (PV) technology as a source of renewable energy has resulted in a significant increase in PV panel waste, creating environmental and economic challenges. A promising strategy to address these challenges is the reuse of glass waste from decommissioned PV panels as a component of cementitious materials. This review explores the potential of integrating glass waste from PV panels into cementitious materials, focusing on its impact on their mechanical, thermal, and durability properties.

View Article and Find Full Text PDF

Recycling of Agricultural Film Wastes for Use as a Binder in Building Composites.

Materials (Basel)

January 2025

Research Team of Quantitative Methods and Spatial Management, Institute of Agriculture and Horticulture, Faculty of Agricultural Sciences, University of Siedlce, B. Prusa 14, 08-110 Siedlce, Poland.

Plastic film, also known as low-density polyethylene (LDPE), poses serious environmental challenges due to mass production, short life cycle, and poor waste management. The main aim of this paper was to examine the suitability of using agricultural waste film as a binder in construction composites instead of the traditional cement slurry. Molten at temperatures of around 120-150 °C wastes was mixed with fine sand and gravel aggregate as filler.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!