Fermi-Level Pinning in ErAs Nanoparticles Embedded in III-V Semiconductors.

Nano Lett

Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States.

Published: April 2024

Embedding rare-earth monopnictide nanoparticles into III-V semiconductors enables unique optical, electrical, and thermal properties for THz photoconductive switches, tunnel junctions, and thermoelectric devices. Despite the high structural quality and control over growth, particle size (<3 nm), and density, the underlying electronic structure of these nanocomposite materials has only been hypothesized. Structural and electronic properties of ErAs nanoparticles with different shapes and sizes (cubic to spherical, 1.14, 1.71, and 2.28 nm) in AlAs, GaAs, InAs, and their alloys are investigated using first-principles calculations, revealing that spherical nanoparticles have lower formation energies. For the lowest-energy nanoparticles, the Fermi level is pinned near midgap in GaAs and AlAs but resonant in the conduction band in InAs. The Fermi level is shifted down as the particle size increases and is pinned on an absolute energy scale considering the band alignment at AlAs/GaAs/InAs interfaces, offering insights into the rational design of these nanomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.3c04995DOI Listing

Publication Analysis

Top Keywords

iii-v semiconductors
8
fermi-level pinning
4
pinning eras
4
eras nanoparticles
4
nanoparticles embedded
4
embedded iii-v
4
semiconductors embedding
4
embedding rare-earth
4
rare-earth monopnictide
4
monopnictide nanoparticles
4

Similar Publications

Developing a reliable procedure for the growth of III-V nanowires (NW) on silicon (Si) substrates remains a significant challenge, as current methods rely on trial-and-error approaches with varying interpretations of critical process steps such as sample preparation, Au-Si alloy formation in the growth reactor, and nanowire alignment. Addressing these challenges is essential for enabling high-performance electronic and optoelectronic devices that combine the superior properties of III-V NW semiconductors with the well-established Si-based technology. Combining conventional scalable growth methods, such as Metalorganic Chemical Vapor Deposition (MOCVD) with in situ characterization using Environmental Transmission Electron Microscopy (ETEM-MOCVD) enables a deeper understanding of the growth dynamics, if that knowledge is transferable to the scalable processes.

View Article and Find Full Text PDF

Phonon modal nonequilibrium is believed to widely exist around nanoscale hotspots, which can significantly affect the performance of nano-electronic and optoelectronic devices. However, such a phenomenon has not been explicitly observed in 3D device semiconductors at the nanoscale. Here, by employing a tip-enhanced Raman thermal measurement approach, substantial phonon nonequilibrium in gallium nitride near sub-10 nm laser-excited hotspots is directly revealed for the first time.

View Article and Find Full Text PDF

Quasi-two-dimensional nanosheets exhibit novel properties and promising applications in optoelectronic flexible devices. Research on non-layered III-V semiconductor nanosheets has been constrained by their covalent bonding connections. In this study, GaAs/AlGaAs heterojunction nanosheets were prepared by releasing an epitaxial layer, and their optical properties were investigated by adopting steady-state and transient absorption spectroscopy.

View Article and Find Full Text PDF

Thick metamorphic buffers are considered indispensable for III-V semiconductor heteroepitaxy on large lattice and thermal-expansion mismatched silicon substrates. However, III-nitride buffers in conventional GaN-on-Si high electron mobility transistors (HEMT) impose a substantial thermal resistance, deteriorating device efficiency and lifetime by throttling heat extraction. To circumvent this, a systematic methodology for the direct growth of GaN after the AlN nucleation layer on six-inch silicon substrates is demonstrated using metal-organic vapor phase epitaxy (MOVPE).

View Article and Find Full Text PDF

The InP(100) Surface Phase Diagram: From the Gas Phase to the Electrochemical Environment.

ACS Appl Mater Interfaces

January 2025

Universität Tübingen, Institute of Physical and Theoretical Chemistry, Auf der Morgenstelle 15, 72076 Tübingen, Germany.

The versatile optoelectronic properties of the material class of III-V semiconductors enable the highest performance in photovoltaic and photoelectrochemical solar cells. While a high level of control and understanding with respect to different surface reconstructions of these compounds in gas-phase ambient has been reached, the situation in an electrochemical environment still poses challenges. Here, we therefore have undertaken a computational study of the InP(100) surface in the presence of hydrogen and chlorine, mimicking the contact with a hydrochloric acid-containing electrolyte, aiming at an understanding of ion adsorption and dominant surface reconstructions with respect to applied potential and electrolyte concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!