A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of an efficient hemostatic material based on cuttlefish ink nanoparticles loaded in cuttlebone biocomposite. | LitMetric

Traumatic hemorrhage is one of the main causes of mortality in civilian and military accidents. This study aimed to evaluate the effectiveness of cuttlefish bone (cuttlebone, CB) and CB loaded with cuttlefish ink (CB-CFI) nanoparticles for hemorrhage control. CB and CB-CFI were prepared and characterized using different methods. The hemostasis behavior of constructed biocomposites was investigated and using a rat model. Results showed that CFI nanoparticles (NPs) are uniformly dispersed throughout the CB surface. CB-CFI (10 mg CFI in 1.0 g of CB) showed the best blood clotting performance in both and tests. findings revealed that the blood clotting time of CB, CFI, and CB-CFI was found to be 275.4 ± 12.4 s, 229.9 ± 19.9 s, and 144.0 ± 17.5 s, respectively. The bleeding time in rat liver injury treated with CB, CFI, and CB-CFI was 158.1 ± 9.2 s, 114.0 ± 5.7 s, and 46.8 ± 2.7 s, respectively. CB-CFI composite resulted in more reduction of aPTT (11.31 ± 1.51 s) in comparison with CB (17.34 ± 2.12 s) and CFI (16.79 ± 1.46 s) ( < 0.05). Furthermore, CB and CB-CFI exhibited excellent hemocompatibility. The CB and CB-CFI did not show any cytotoxicity on human foreskin fibroblast (HFF) cells. The CB-CFI has a negative surface charge and may activate coagulation factors through direct contact with their components, including CaCO, chitin, and CFI-NPs with blood. Thus, the superior hemostatic potential, low cost, abundant, simple, and time-saving preparation process make CB-CFI a very favorable hemostatic material for traumatic bleeding control in clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3tb01966gDOI Listing

Publication Analysis

Top Keywords

cb-cfi
10
hemostatic material
8
cuttlefish ink
8
blood clotting
8
cfi cb-cfi
8
cfi
5
development efficient
4
efficient hemostatic
4
material based
4
based cuttlefish
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!