The James-Stein estimator is an estimator of the multivariate normal mean and dominates the maximum likelihood estimator (MLE) under squared error loss. The original work inspired great interest in developing shrinkage estimators for a variety of problems. Nonetheless, research on shrinkage estimation for manifold-valued data is scarce. In this article, we propose shrinkage estimators for the parameters of the Log-Normal distribution defined on the manifold of × symmetric positive-definite matrices. For this manifold, we choose the Log-Euclidean metric as its Riemannian metric since it is easy to compute and has been widely used in a variety of applications. By using the Log-Euclidean distance in the loss function, we derive a shrinkage estimator in an analytic form and show that it is asymptotically optimal within a large class of estimators that includes the MLE, which is the sample Fréchet mean of the data. We demonstrate the performance of the proposed shrinkage estimator via several simulated data experiments. Additionally, we apply the shrinkage estimator to perform statistical inference in both diffusion and functional magnetic resonance imaging problems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11000275PMC
http://dx.doi.org/10.1080/01621459.2022.2110877DOI Listing

Publication Analysis

Top Keywords

shrinkage estimator
12
shrinkage estimation
8
manifold symmetric
8
symmetric positive-definite
8
positive-definite matrices
8
shrinkage estimators
8
shrinkage
7
estimator
6
empirical bayes
4
bayes approach
4

Similar Publications

The current paper aimed to estimate the network structure of general psychopathology (internalizing and externalizing symptoms/disorders) among 239 gifted children in Jordan. This cross-sectional study with a convenience sampling method was conducted between September 2023 and October 2024 among gifted children aged 7-12. The Child Behavior Checklist (CBCL) was employed to assess six symptom clusters: conduct problems, attention-deficit/hyperactivity disorder (ADHD), and oppositional defiant problems as externalizing symptoms, and affective problems, anxiety issues, and somatic complaints as internalizing symptoms.

View Article and Find Full Text PDF

Chemical release data are essential for performing chemical risk assessments to understand the potential exposures arising from industrial processes. Often, these data are unknown or unavailable and must be estimated. A case study of volatile organic compound releases during extrusion-based additive manufacturing is used here to explore the viability of various regression methods for predicting chemical releases to inform chemical assessments.

View Article and Find Full Text PDF

HighDimMixedModels.jl: Robust high-dimensional mixed-effects models across omics data.

PLoS Comput Biol

January 2025

Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

High-dimensional mixed-effects models are an increasingly important form of regression in which the number of covariates rivals or exceeds the number of samples, which are collected in groups or clusters. The penalized likelihood approach to fitting these models relies on a coordinate descent algorithm that lacks guarantees of convergence to a global optimum. Here, we empirically study the behavior of this algorithm on simulated and real examples of three types of data that are common in modern biology: transcriptome, genome-wide association, and microbiome data.

View Article and Find Full Text PDF

Strong sex differences exist in sleep phenotypes and also cardiovascular diseases (CVDs). However, sex-specific causal effects of sleep phenotypes on CVD-related outcomes have not been thoroughly examined. Mendelian randomization (MR) analysis is a useful approach for estimating the causal effect of a risk factor on an outcome of interest when interventional studies are not available.

View Article and Find Full Text PDF

Predicting the coefficient of volume compressibility (m) would help a field engineer to make a quick estimate of the soil compressibility. The multiple correlations suggested by various researchers as available in the literature indicate the importance of predicting the m of soil. The existing correlations as available in literature either use soil state (in the form of SPT N-value or unconfined compressive strength or natural water content) or soil type (in the form of plasticity properties).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!