Charge Injection Enhancement Comparisons of Iridium Oxide Microelectrodes and Using a Portable Neurostimulator.

Int IEEE EMBS Conf Neural Eng

M. Han is with the Biomedical Engineering Department, University of Connecticut, Storrs, CT 06269 USA.

Published: April 2023

Microelectrodes are desired to deliver more charges to neural tissues while under electrochemical safety limits. Applying anodic bias potential during neurostimulation is a known technique for charge enhancement. Here, we investigated the levels of charge enhancement with anodic bias potential and using a custom-designed portable neurostimulator. We immersed our custom microelectrode probe in saline and measured voltage transients in response to constant current stimulation with and without a 500 mV anodic bias potential. We then inserted the same microelectrode probe into the primary motor cortex of the rat brain and measured voltage transients with the same electronics. Results showed that the charge injection capacity of the activated iridium oxide microelectrode site (with 2000 μm geometric surface areas (GSAs)) increased by the use of the anodic bias potentials in both and : from 10 nC/phase to 32 nC/phase for 200 μs pulse widths, and from 2 nC/phase to 8 nC/phase, respectively. Thus, the order of charge injection capacities of the four cases tested in this study is as follows (from the lowest to the highest): without anodic bias, with anodic bias, without anodic bias, and with anodic bias. This work also validated use of our new portable neurostimulator which received stimulation waveforms wirelessly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11000213PMC
http://dx.doi.org/10.1109/ner52421.2023.10123832DOI Listing

Publication Analysis

Top Keywords

anodic bias
32
charge injection
12
portable neurostimulator
12
bias potential
12
bias anodic
12
iridium oxide
8
anodic
8
bias
8
charge enhancement
8
microelectrode probe
8

Similar Publications

Despite advancements in preclinical and clinical spinal cord stimulation (SCS) research, the mechanisms of SCS action remain unclear. This may result from challenges in translatability of findings between species. Our systematic review (PROSPERO: CRD42023457443) aimed to comprehensively characterize the important translational components of preclinical SCS models, including stimulating elements and stimulation specifications.

View Article and Find Full Text PDF

Enhancing the rate of the oxygen evolution reaction (OER) by doping Ni-based electrocatalysts with guest metals other than Fe (V in this work) and the stability of the metal site should be assessed independent of Fe traces and in relation to the guest metal activity in solution. We examined OER catalysis and its sustainability at vanadium-doped nickel phosphide (NiP-V) independent of the role of Fe traces in alkaline. V was included in NiP by codeposition at cathodic bias (termed V) or postdeposition during the phosphide-to-hydroxide surface transformation at anodic bias in alkaline spiked with VCl (termed V).

View Article and Find Full Text PDF

Molecular conductance calculations of single-molecule junctions using projection-based density functional embedding.

J Chem Phys

January 2025

Laboratory of Theoretical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary.

Single-Molecule Junctions (SMJs) are key platforms for the exploration of electron transport at the molecular scale. In this study, we present a method that employs different exchange-correlation density functionals for the molecule and the lead domains in an SMJ, enabling the selection of the optimal one for each part. This is accomplished using a formally exact projection-based density-functional theory (DFT-in-DFT) embedding technique combined with the non-equilibrium Green's function method to predict zero-bias conductance.

View Article and Find Full Text PDF

Effect of defects on ballistic transport in a bilayer SnS-based junction with Co intercalated electrodes.

Phys Chem Chem Phys

January 2025

Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China.

This study theoretically investigates the defect-related electronic structure and transport properties in a device where a semiconductor bilayer SnS (BL-SnS) serves as the central scattering region and bilayer SnS with cobalt atom intercalation (Co-SnS) as the metallic electrodes. The Co-SnS/BL-SnS junction forms an ohmic contact, which is robust to defects. Low contact resistances of 52.

View Article and Find Full Text PDF

Study on Quantitative Adjustment of CD Bias and Profile Angle in the Wet Etching of Cu-Based Stacked Electrode.

Materials (Basel)

December 2024

Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 400044, China.

The electrodes of thin film transistors (TFTs) have evolved from conventional single Cu layers to multi-layered structures formed by Cu and other metals or alloys. Different etching rates of various metals and galvanic corrosion between distinct metals may cause etching defects such as rough or uneven cross-sectional surfaces of stacked electrodes. Therefore, the etching of stacked electrodes faces new challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!