Diagnosing arsenic-mediated biochemical responses in rice cultivars using Raman spectroscopy.

Front Plant Sci

Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States.

Published: March 2024

Rice () is the primary crop for nearly half of the world's population. Groundwater in many rice-growing parts of the world often has elevated levels of arsenite and arsenate. At the same time, rice can accumulate up to 20 times more arsenic compared to other staple crops. This places an enormous amount of people at risk of chronic arsenic poisoning. In this study, we investigated whether Raman spectroscopy (RS) could be used to diagnose arsenic toxicity in rice based on biochemical changes that were induced by arsenic accumulation. We modeled arsenite and arsenate stresses in four different rice cultivars grown in hydroponics over a nine-day window. Our results demonstrate that Raman spectra acquired from rice leaves, coupled with partial least squares-discriminant analysis, enabled accurate detection and identification of arsenic stress with approximately 89% accuracy. We also performed high-performance liquid chromatography (HPLC)-analysis of rice leaves to identify the key molecular analytes sensed by RS in confirming arsenic poisoning. We found that RS primarily detected a decrease in the concentration of lutein and an increase in the concentration of vanillic and ferulic acids due to the accumulation of arsenite and arsenate in rice. This showed that these molecules are detectable indicators of biochemical response to arsenic accumulation. Finally, a cross-correlation of RS with HPLC and ICP-MS demonstrated RS's potential for a label-free, non-invasive, and non-destructive quantification of arsenic accumulation in rice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10999542PMC
http://dx.doi.org/10.3389/fpls.2024.1371748DOI Listing

Publication Analysis

Top Keywords

arsenite arsenate
12
arsenic accumulation
12
rice
9
rice cultivars
8
raman spectroscopy
8
arsenic
8
arsenic poisoning
8
rice leaves
8
diagnosing arsenic-mediated
4
arsenic-mediated biochemical
4

Similar Publications

Arsenic-resistant Klebsiella oxytoca strain AT-02 was isolated from the ground water of the Multan region of Pakistan. The strain displayed high arsenite and arsenate resistance as minimal inhibitory concentration (MIC) was 600ppm and 10,000ppm respectively. The high tolerance of the isolated strain towards arsenate can be postulated due to significant increase in biofilm in response to arsenate.

View Article and Find Full Text PDF

High through-put groundwater arsenic speciation analysis using an automated flow analyzer.

J Environ Sci (China)

July 2025

State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou 363000, China. Electronic address:

The occurrence of geogenic arsenic (As) in groundwater is a global public health concern. However, there remain large gaps in groundwater As data, making it difficult to identify non-compliant domestic wells, partly due to lack of low-cost methods capable of rapid As analysis. Therefore, the development of high through-put and reliable on-site determination methods for inorganic As is essential.

View Article and Find Full Text PDF

Arsenic speciation in freshwater fish using high performance liquid chromatography and inductively coupled plasma mass spectrometry.

J Environ Sci (China)

July 2025

Department of Chemistry, Faculty of Science, University of Alberta, 11227 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2G2, Canada; Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3, Canada. Electronic address:

Arsenic speciation in freshwater fish is crucial for providing meaningful consumption guidelines that allow the public to make informed decisions regarding its consumption. While marine fish have attracted much research interest due to their higher arsenic content, research on freshwater fish is limited due to the challenges in quantifying and identifying arsenic species present at trace levels. We describe here a sensitive method and its application to the quantification of arsenic species in freshwater fish.

View Article and Find Full Text PDF

Rapid screening of inorganic arsenic in groundwater on-site by a portable three-channel colorimeter.

J Environ Sci (China)

July 2025

Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:

Rapid screening of inorganic arsenic (iAs) in groundwater used for drinking by hundreds of millions of mostly rural residents worldwide is crucial for health protection. Most commercial field test kits are based on the Gutzeit reaction that uses mercury-based reagents for color development, an environmental concern that increasingly limits its utilization. This study further improves the Molybdenum Blue (MB) colorimetric method to allow for faster screening with more stable reagents.

View Article and Find Full Text PDF

Effective treatment of thioantimonates-bearing waters by nanocrystalline iowaite, an iron-based layered double hydroxide.

Environ Pollut

January 2025

State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, PR China.

Elevated concentrations of antimony (Sb) in the environment originating from natural and anthropogenic sources are of global concern due to their high toxicity and mobility. Notably, the formation of thioantimony species (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!