RNASEH1-AS1, a long non-coding RNA (lncRNA) divergently transcribed from the antisense strand of its neighboring protein-coding gene ribonuclease H1 (RNASEH1), has recently been demonstrated to be involved in tumor progression. However, the association between RNASEH1-AS1 and hepatocellular carcinoma (HCC) remains unclear. In the present study, first, the expression of RNASEH1-AS1 in HCC and its correlation with clinicopathological features, prognosis, diagnosis, immune cell infiltration of HCC patients was inspected using relevant R packages based on The Cancer Genome Atlas (TCGA) data. RNASEH1-AS1 was found to be up-regulated in most cancer types, including HCC, and its overexpression was significantly associated with histologic grade and AFP level as well as poor prognosis, and was an independent risk factor affecting overall survival with good diagnostic and prognostic values for HCC. RNASEH1-AS1 was inversely associated with the infiltration of most immune cell types, including plasmacytoid dendritic cells (pDC), B cells and neutrophils. Second, a total of 1109 positively co-expressed genes (PCEGs) of RNASEH1-AS1 were screened out in HCC by correlation analysis in batches (|Spearman's r| >0.4 and adjusted value <0.01). GO and KEGG enrichment analysis indicated that PCEGs of RNASEH1-AS1 were mainly related to RNA processing, ribosome biogenesis, transcription and histone acetylation. The top 10 hub genes (EIF4A3, WDR43, WDR12, DKC1, NAT10, UTP18, DDX18, BYSL, DDX10, PDCD11) were identified by constructing the protein-protein interaction (PPI) network, and they were all highly expressed in HCC and positively correlated with histological grade. Third, a risk model was constructed based on four RNASEH1-AS1-related hub genes (EIF4A3, WDR12, DKC1, and NAT10) with good prognostic predictive potential via univariate Cox and the least absolute selection operator (LASSO) regression analysis. Fourth, experimental validation revealed that RNASEH1-AS1 was significantly elevated in HCC tissues and several cell lines, and its knockdown could suppress the proliferation, migration, and invasion of HCC cells. Finally, mechanistic studies demonstrated that the stability of RNASEH1-AS1 could be regulated by DKC1 via their direct interaction. Taken together, RNASEH1-AS1 may serve as a potential prognostic and diagnostic biomarker and oncogenic lncRNA for HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10998738PMC
http://dx.doi.org/10.62347/JPHF4071DOI Listing

Publication Analysis

Top Keywords

long non-coding
8
non-coding rna
8
hepatocellular carcinoma
8
hcc correlation
8
immune cell
8
types including
8
rnaseh1-as1
7
hcc
6
comprehensive analysis
4
analysis identifies
4

Similar Publications

Effects of miRNAs in inborn error of metabolism and treatment strategies.

Postgrad Med J

January 2025

Department of Pediatric Metabolic Diseases, University of Health Sciences, Ankara Etlik City Hospital, Ankara 06170, Turkey.

Metabolism is the name given to all of the chemical reactions in the cell involving thousands of proteins, including enzymes, receptors, and transporters. Inborn errors of metabolism (IEM) are caused by defects in the production and breakdown of proteins, fats, and carbohydrates. Micro ribonucleic acids (miRNAs) are short non-coding RNA molecules, ⁓19-25 nucleotides long, hairpin-shaped, produced from DNA.

View Article and Find Full Text PDF

Elevated LINC00115 expression correlates with aggressive endometrial cancer phenotypes via JAK/STAT pathway modulation.

Hum Mol Genet

January 2025

Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of CM, No. 19, Renmin Road, Jinshui District, Zhengzhou City, Henan Province, China.

This study systematically explores the oncogenic role of the long non-coding RNA (lncRNA) LINC00115 in endometrial cancer (EC) and reveals its unique mechanism in promoting proliferation, invasion, and metastasis via the JAK/STAT signaling pathway. LINC00115 is significantly upregulated in EC tissues and closely associated with advanced TNM staging and lymph node metastasis. Functional assays showed that knockdown of LINC00115 suppressed EC cell proliferation, invasion, and metastasis, while overexpression enhanced these malignant behaviors.

View Article and Find Full Text PDF

Knockout of a testis-specific gene cluster impairs male fertility in the fall armyworm, Spodoptera frugiperda.

Pest Manag Sci

January 2025

Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China.

Background: The function of some testis-specific genes (TSGs) in model insects have been studied, but their function in non-model insects remains largely unexplored. In the present study, we identified several TSGs in the fall armyworm (FAW), a significant agricultural pest, through comparative transcriptomic analysis. A testis-specific gene cluster (TSGC) comprising multiple functional genes and long non-coding RNAs was found.

View Article and Find Full Text PDF

This review article studies the complex field of noncoding RNAs (ncRNAs) in cancer biology, focusing on their potential use as biomarkers and therapeutic targets. NcRNAs include circular RNAs (circRNAs), long noncoding RNAs (lncRNAs), and microRNAs (miRNAs). We discuss how ncRNAs affect gene expression in cancerous cells, the spread of cancer, and metastasis.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) and RNA N⁶-methyladenosine (m A) have been linked to leukemia drug resistance. However, whether and how lncRNAs and m A coordinately regulate resistance remain elusive. Here, we show that many differentially expressed lncRNAs enrich m A, and more lncRNAs tend to have higher m A content in CML cells resistant to tyrosine kinase inhibitors (TKIs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!