Synthesis and Antifungal Activity of Coumarin Derivatives Containing Hydrazone Moiety.

Chem Biodivers

College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, 830052, Urumqi, China.

Published: June 2024

Plant disease control mainly relies on pesticides. In this study, a series of coumarin derivatives containing hydrazone moiety were designed and synthesized. The synthesized compounds were characterized and used to evaluate the antifungal activity against four pathogens, Botrytis cinerea, Alternaria solani, Fusarium oxysporum, and Alternaria alternata. The results showed that the inhibition rate of some compounds at 100 μg/mL in 96 hours reached around 70 % against A. alternata, higher than that of the positive control. The corresponding EC values were found at around 30 μg/mL. Finally, the compound 3 b was screened out with the lowest EC value (19.49 μg/mL). The analysis of SEM and TEM confirmed that the compound 3 b can obviously damage the morphological structure of hyphae, resulting in the depletion of the cells by the destruction of morphological matrix and leakage of contents. RNA sequencing showed that compounds 3 b mainly affected the pentose phosphate pathway, which caused to destroy the layer of mitochondrial structure. Molecular docking showed that compounds 3 b fitted the binding pocket of yeast transketolase and interacted with lysine at the hydrazone structure. Our results suggested that the introduction of hydrazone was an effective strategy for the design of novel bioactive compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.202400583DOI Listing

Publication Analysis

Top Keywords

antifungal activity
8
coumarin derivatives
8
derivatives hydrazone
8
hydrazone moiety
8
compound 3 b
8
compounds 3 b
8
compounds
5
synthesis antifungal
4
activity coumarin
4
hydrazone
4

Similar Publications

<i>Ormocarpum trichocarpum</i> (Taub.) Engl. is a shrub or small tree harvested from the wild as a source of food, traditional medicines and wood.

View Article and Find Full Text PDF

Unlabelled: Excessive production of extracellular matrix is a key component in the pathogenesis of Salzmann's nodular degeneration (SND). studies of drugs that suppress excessive fibroblast activity may become crucial in developing pathogenetically oriented treatments for SND.

Purpose: This study evaluates the antifibrotic properties of pirfenidone and cyclosporine A (CsA) on cell cultures obtained from patients with SND.

View Article and Find Full Text PDF

Saprolegniasis is one of the most dangerous fungal diseases of fish, causing significant mortality in fish hatcheries and young ones. The present study aimed to isolate and characterize the causative fungus from fingerlings of Pangasianodon hypophthalmus cultured intensively in freshwater cages in Indian reservoirs and to determine minimum inhibitory concentrations of different antifungal compounds against the fungal hyphae and zoospores. The fungal isolates grown on potato dextrose agar showed an abundance of gemmae, elongated mycelia, non-septate hyphae, primary zoospores, mature zoosporangia with numerous zoospores, cysts with bundles of long hairs and were further identified as Saprolegnia parasitica following PCR amplification and sequencing of internal transcribed spacer region.

View Article and Find Full Text PDF

Rhazya stricta, a perennial shrub native to the Middle East and South Asia, has been used in traditional medicine for various therapeutic purposes, including antimicrobial action. The current study aimed to compare the antifungal properties of 96% and 50% ethanolic extracts of R. stricta leaves and their biogenic silver nanoparticles (AgNPs).

View Article and Find Full Text PDF

Luliconazole (LCZ) is a topical imidazole antifungal agent with broad-spectrum activity. However, LCZ encounters challenges such as low aqueous solubility, skin retention, and penetration, which reduce its dermal bioavailability and hinder its efficacy in drug delivery. The aim of the present study was to formulate, characterize, and evaluate the in vitro antifungal efficacy of luliconazole-loaded nanostructured lipid carriers (LCZ-NLCs) against a panel of resistant fungal strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!