Photochemically Induced Propulsion of a 4D Printed Liquid Crystal Elastomer Biomimetic Swimmer.

Adv Sci (Weinh)

Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Departamento de Física de la Materia Condensada, Zaragoza, 50009, Spain.

Published: July 2024

Underwater organisms exhibit sophisticated propulsion mechanisms, enabling them to navigate fluid environments with exceptional dexterity. Recently, substantial efforts have focused on integrating these movements into soft robots using smart shape-changing materials, particularly by using light for their propulsion and control. Nonetheless, challenges persist, including slow response times and the need of powerful light beams to actuate the robot. This last can result in unintended sample heating and potentially necessitate tracking specific actuation spots on the swimmer. To tackle these challenges, new azobenzene-containing photopolymerizable inks are introduced, which can be processed by extrusion printing into liquid crystalline elastomer (LCE) elements of precise shape and morphology. These LCEs exhibit rapid and significant photomechanical response underwater, driven by moderate-intensity ultraviolet (UV) and green light, being the actuation mechanism predominantly photochemical. Inspired by nature, a biomimetic four-lapped ephyra-like LCE swimmer is printed. The periodically illumination of the entire swimmer with moderate-intensity UV and green light, induces synchronous lappet bending toward the light source and swimmer propulsion away from the light. The platform eliminates the need of localized laser beams and tracking systems to monitor the swimmer's motion through the fluid, making it a versatile tool for creating light-fueled robotic LCE free-swimmers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220691PMC
http://dx.doi.org/10.1002/advs.202308561DOI Listing

Publication Analysis

Top Keywords

green light
8
light
6
swimmer
5
photochemically induced
4
propulsion
4
induced propulsion
4
propulsion printed
4
printed liquid
4
liquid crystal
4
crystal elastomer
4

Similar Publications

The Formation and Features of Massive Vacuole Induced by Nutrient Deficiency in Human Embryonic Kidney Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Cardiovascular Medicine, Binzhou Medical University Hospital, 256603 Binzhou, Shandong, China.

Background: Cellular vacuolization is a commonly observed phenomenon under physiological and pathological conditions. However, the mechanisms underlying vacuole formation remain largely unresolved.

Methods: LysoTracker Deep Red probes and Enhanced Green Fluorescent Protein-tagged light chain 3B (LC3B) plasmids were employed to differentiate the types of massive vacuoles.

View Article and Find Full Text PDF

Plant factories with artificial lighting (PFALs) are a notable choice for urban agriculture due to the system's benefits, where light can be manipulated to enhance the product's yield and quality. Our objective was to test the effect of light spectra with different red-blue combinations and white light on the growth, physiology, and overall quality of three baby-leaf vegetables (green lettuce, kale, and pak choi) grown in a restaurant's PFAL. Leaf mass per area was lower under the most blue-containing treatments in all species.

View Article and Find Full Text PDF

Rapid heating cycle molding technology has recently emerged as a novel injection molding technique, with the uniformity of temperature distribution on the mold cavity surface being a critical factor influencing product quality. A numerical simulation method is employed to investigate the rapid heating process of molds and optimize heating power, with the positions of heating rods as variables. The temperature uniformity coefficient is an indicator used to assess the uniformity of temperature distribution within a system or process, while the thermal response rate plays a crucial role in evaluating the heating efficiency of a heating system.

View Article and Find Full Text PDF

Herein, a WO@TCN photocatalyst was successfully synthesized using a self-assembly method, which demonstrated effectiveness in degrading organic dyestuffs and photocatalytic evolution of H. The synergistic effect between WO and TCN, along with the porous structure of TCN, facilitated the formation of a heterojunction that promoted the absorption of visible light, accelerated the interfacial charge transfer, and inhibited the recombination of photogenerated electron-hole pairs. This led to excellent photocatalytic performance of 3%WO@TCN in degrading TC and catalyzing H evolution from water splitting under visible-light irradiation.

View Article and Find Full Text PDF

Unraveling TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR Transcription Factors in Safflower: A Blueprint for Stress Resilience and Metabolic Regulation.

Molecules

January 2025

Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.

Safflower ( L.), a versatile medicinal and economic crop, harbors untapped genetic resources essential for stress resilience and metabolic regulation. The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors, exclusive to plants, are pivotal in orchestrating growth, development, and stress responses, yet their roles in safflower remain unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!