Background: The Environmental Protection Agency has listed eggshell waste as the 15th most significant food industry pollution hazard. Using eggshell waste as a renewable energy source has been a hot topic recently. Therefore, finding a sustainable solution for the recycling and valorization of eggshell waste by investigating its potential to produce acid phosphatase (ACP) and organic acids by the newly-discovered B. sonorensis was the target of the current investigation.
Results: Drawing on both molecular and morphological characterizations, the most potent ACP-producing B. sonorensis strain ACP2, was identified as a local bacterial strain obtained from the effluent of the paper and pulp industries. The use of consecutive statistical experimental approaches of Plackett-Burman Design (PBD) and Orthogonal Central Composite Design (OCCD), followed by pH-uncontrolled cultivation conditions in a 7 L bench-top bioreactor, revealed an innovative medium formulation that substantially improved ACP production, reaching 216 U L with an ACP yield coefficient Y of 18.2 and a specific growth rate (µ) of 0.1 h. The metals Ag, Sn, and Cr were the most efficiently released from eggshells during the solubilization process by B. sonorensis. The uncontrolled pH culture condition is the most suitable and favoured setting for improving ACP and organic acids production. Quantitative and qualitative analyses of the produced organic acids were carried out using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Lactic acid, citric acid, and hydroxybenzoic acid isomer were the most common organic acids produced throughout the cultivation process. The findings of TGA, DSC, SEM, EDS, FTIR, and XRD analysis emphasize the significant influence of organic acids and ACP activity on the solubilization of eggshell particles.
Conclusions: This study emphasized robust microbial engineering approaches for the large-scale production of a newly discovered acid phosphatase, accompanied by organic acids production from B. sonorensis. The biovalorization of the eggshell waste and the production of cost-effective ACP and organic acids were integrated into the current study, and this was done through the implementation of a unique and innovative medium formulation design for eggshell waste management, as well as scaling up ACP production on a bench-top scale.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11003023 | PMC |
http://dx.doi.org/10.1186/s13036-024-00421-8 | DOI Listing |
Nat Commun
January 2025
Department of Chemistry Education, Seoul National University, Seoul, Republic of Korea.
In terms of safety and emergency response, identifying hazardous gaseous acid chemicals is crucial for ensuring effective evacuation and administering proper first aid. However, current studies struggle to distinguish between different acid vapors and remain in the early stages of development. In this study, we propose an on-site monitorable acid vapor decoder, MOF-808-EDTA-Cu, integrating the robust MOF-808 with Cu-EDTA, functioning as a proton-triggered colorimetric decoder that translates the anionic components of corrosive acids into visible colors.
View Article and Find Full Text PDFChin Med
January 2025
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
Background: Jianwei Xiaoshi oral liquid (JWXS), a classical traditional prescription comprising various edible medicinal plants, has demonstrated significant efficacy in treating paediatric indigestion. It originates from Jianpi Pill, which is developed in the Ming Dynasty and nourishes the spleen and regulates gastrointestinal function. However, the specific molecular mechanisms involved remain unclear.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China. Electronic address:
The carboxymethyl chitosan (CMCS)-based porous beads are still criticized for their limited number of binding sites, which impairs their efficacy in removing aqueous pollutants. To overcome this challenge, this work introduces the production of covalently crosslinked CMCS-based beads containing SiO and poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS). The porous composite beads not only possess remarkable stability under acidic conditions, but also have abundant active binding sites for adsorption.
View Article and Find Full Text PDFTalanta
January 2025
College of Chemistry and Materials Science, Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metals Pollution in the Upper Reaches of Xiangjiang River, Hengyang Normal University, Hengyang, 421001, China. Electronic address:
The accurate and sensitive quantification of hydroxyl radical (·OH) and glucose is necessary for disease diagnosis and health guidance, but still challenging owing to the low concentration of ·OH and poor water solubility of fluorescent probes. In addition, fluorescent probes may cause secondary pollution to the environment. Here an organic cage was reported as a sensitive fluorescent probe for ·OH and glucose in aqueous solution without serious secondary pollution.
View Article and Find Full Text PDFJ Nat Prod
January 2025
Department of Chemistry, Federal University of Piaui, Campus Ministro Petrônio Portela, Teresina, PI 64049-550, Brazil.
With praziquantel being the sole available drug for schistosomiasis, identifying novel anthelmintic agents is imperative. A chemical investigation of the fruiting body of the bioluminescent mushroom Berk. resulted in the isolation of new conjugated long-chain fatty acids (8,10,12,13)-12,13-dihydroxy-7-oxo-octadeca-8,10-dienoic acid () and (7,8,9,11)-7,8-dihydroxy-13-oxo-octadeca-9,11-dienoic acid () and three previously described compounds, (7,8,9)-7,8-dihydroxyoctadec-9-enoic acid (), (2)-dec-2-ene-1,10-dioic acid (), and a ketolactone marasmeno-1,15-dione ().
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!