Prostate cancer is the most common cancer after non-melanoma skin cancer and the second leading cause of cancer deaths in US men. Its incidence and mortality rates vary substantially across geographical regions and over time, with large disparities by race, geographic regions (i.e., Appalachia), among others. The widely used Cox proportional hazards model is usually not applicable in such scenarios owing to the violation of the proportional hazards assumption. In this paper, we fit Bayesian accelerated failure time models for the analysis of prostate cancer survival and take dependent spatial structures and temporal information into account by incorporating random effects with multivariate conditional autoregressive priors. In particular, we relax the proportional hazards assumption, consider flexible frailty structures in space and time, and also explore strategies for handling the temporal variable. The parameter estimation and inference are based on a Monte Carlo Markov chain technique under a Bayesian framework. The deviance information criterion is used to check goodness of fit and to select the best candidate model. Extensive simulations are performed to examine and compare the performances of models in different contexts. Finally, we illustrate our approach by using the 2004-2014 Pennsylvania Prostate Cancer Registry data to explore spatial-temporal heterogeneity in overall survival and identify significant risk factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11003030 | PMC |
http://dx.doi.org/10.1186/s12874-024-02201-w | DOI Listing |
Sci Rep
December 2024
Department of Public Health, College of Life Sciences, Brigham Young University, 2063 Life Sciences Building, Provo, UT, 84602, USA.
The prevalence of prostate-specific antigen (PSA) testing has consistently fallen for several years. This study explored how the decreasing trend differs by selected variables and reasons for taking the PSA test. Analyses involved men, aged 40 years or older, who completed the Behavior Risk Factor Surveillance System (BRFSS) survey in even number years from 2008 through 2022.
View Article and Find Full Text PDFAnn Surg Oncol
December 2024
Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA.
Background: Benzodiazepines are the third most misused medication, with many patients having their first exposure during a surgical episode. We sought to characterize factors associated with new persistent benzodiazepine use (NPBU) among patients undergoing cancer surgery.
Patients And Methods: Patients who underwent cancer surgery between 2013 and 2021 were identified using the IBM-MarketScan database.
Prostate Cancer Prostatic Dis
December 2024
Department of Radiation Oncology, Peking University First Hospital, 100034, Beijing, China.
Background: Metastatic prostate cancer (PCa) has much lower survival and ultimately develops castration resistance, which expects novel targets and therapeutic approaches. As a result of iron-dependent lipid peroxidation, ferroptosis triggers programmed cell death and has been associated with castration-resistant prostate cancer (CRPC).
Subjects: To better understand how ferroptosis can be used to treat CRPC, we reviewed the following: First, ferroptosis mechanisms and characteristics.
Sci Rep
December 2024
Clinical Nursing Teaching and Research Section, The Second XiangYa Hospital, Central South University, No139, Renmin Road, Changsha, 410011, China.
Prostate cancer, a common malignancy in older men, often requires laparoscopic radical prostatectomy, considered the gold standard treatment. However, postoperative complications can significantly impact quality of life and psychological well-being. The emergence of mobile internet health management offers a promising approach for accessible and effective post-discharge care.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Urology, Urological Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea.
Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!