Enhanced Electrochemical Performance in Supercapacitors through KCu-Cy Based Metal-Organic Framework Electrodes.

Chemphyschem

Laboratoire de Recherche sur les Matériaux Alternatifs et Valorisation des Ressources, Département des sciences fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Saguenay, Chicoutimi, QC G7H 2B1, Canada.

Published: July 2024

In the realm of electronics and electric energy storage, the convergence of organic and metallic materials has yielded promising outcomes. In this study, we introduce a novel metal-organic polymer synthesized from Cyamelurate and copper (KCu-Cy) and explore its application as an electrode for a supercapacitor. This material was pressed onto a stainless-steel grid as a thin film and synthesized on nickel foam. Comprehensive characterization was carried out to confirm the synthesis, ensure phase purity, and investigate atomic interactions. Single Crystal X-ray Diffraction (SCXRD) and Powder X-ray Diffraction (PXRD) analyses verified the synthesis and phase purity, shedding light on atomic arrangements. Fourier Transform Infrared Spectroscopy (FTIR) analyses provided insights into characteristic peaks within the material. Thermal Gravimetric Analysis (TGA) gauged stability and durability. Electrochemical performance was assessed through cyclic voltammetry. Notably, the nickel-supported electrodes, devoid of binders, exhibited exceptional specific capacity, reaching 1210.89 F/g at a scan rate of 5 mV/s, in contrast to 363.73 F/g for the pressed thin film on the stainless-steel grid, which incorporated a conductive agent and binder. Cu-Cy displayed impressive cyclization resistance, with a capacity retention of 90 % even after 11000 cycles. These findings underline the promise of Cu-Cy as a high-performance electrode material for supercapacitors, particularly in binder-free configurations, and suggest its potential in advanced energy storage applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.202300822DOI Listing

Publication Analysis

Top Keywords

electrochemical performance
8
energy storage
8
stainless-steel grid
8
thin film
8
phase purity
8
x-ray diffraction
8
enhanced electrochemical
4
performance supercapacitors
4
supercapacitors kcu-cy
4
kcu-cy based
4

Similar Publications

Ion Networks in Water-based Li-ion Battery Electrolytes.

Acc Chem Res

January 2025

Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.

ConspectusWater-in-salt electrolytes (WiSEs) are promising electrolytes for next-generation lithium-ion batteries (LIBs), offering critical advantages like nonflammability and improved safety. These electrolytes have extremely high salt concentrations and exhibit unique solvation structures and transport mechanisms dominated by the formation of ion networks and aggregates. These ion networks are central to the performance of WiSEs, govern the transport properties and stability of the electrolyte, deviating from conventional dilute aqueous or organic electrolytes.

View Article and Find Full Text PDF

Lithium-tellurium (Li-Te) batteries are gaining attention as a promising next-generation energy storage system due to their superior electrical conductivity and high volumetric capacity compared to sulfur and selenium. Tellurium's unique properties, such as suitable redox potential, excellent conductivity, high volumetric capacity, and greatest stability, position it as a strong candidate for negative electrode materials. This study explores the potential of metal tellurides, specifically CuTe and FeTe monolayers, as effective tellurium host materials, leveraging their polar interactions with lithium polytellurides.

View Article and Find Full Text PDF

Developing high-energy-density lithium-sulfur batteries faces serious polysulfide shuttle effects and sluggish conversion kinetics, often necessitating the excessive use of electrolytes, which in turn adversely affects battery performance. Our study introduces a meticulously designed electrocatalyst, Cu-CeO@N/C, to enhance lean-electrolyte lithium-sulfur battery performance. This catalyst, featuring in situ synthesized Cu clusters, regulates oxygen vacancies in CeO and forms Cu-CeO heterojunctions, thereby diminishing sulfur conversion barriers and hastening reaction kinetics through the generation of S/S intermediates.

View Article and Find Full Text PDF

The rising demand for efficient energy storage in flexible electronics is driving the search for materials that are well-suited for the fabrication of these devices. Layered Double Hydroxides (LDHs) stand out as a remarkable material with a layered structure that embodies exceptional electrochemical properties. In this study, both double-shelled and single-shelled NiFe-Layered Double Hydroxide (LDH) particles are prepared using spindle-shaped MIL-101(Fe) as the template.

View Article and Find Full Text PDF

Biomimetic calcification is a micro-crystallization process that mimics the natural biomineralization process, where biomacromolecules regulate the formation of inorganic minerals. In this study, it is presented that a protein-assisted biomimetic calcification method for the in situ synthesis of nitrogen-doped metal-organic framework (MOF) materials. A series of unique core-shell structures are created by utilizing proteins as templates and guiding agents in the nucleation step, creating ideal conditions for shell growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!