Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose Of Review: Patient-reported outcome measures (PROM) play a critical role in evaluating the success of treatment interventions for musculoskeletal conditions. However, predicting which patients will benefit from treatment interventions is complex and influenced by a multitude of factors. Artificial intelligence (AI) may better anticipate the propensity to achieve clinically meaningful outcomes through leveraging complex predictive analytics that allow for personalized medicine. This article provides a contemporary review of current applications of AI developed to predict clinically significant outcome (CSO) achievement after musculoskeletal treatment interventions.
Recent Findings: The highest volume of literature exists in the subspecialties of total joint arthroplasty, spine, and sports medicine, with only three studies identified in the remaining orthopedic subspecialties combined. Performance is widely variable across models, with most studies only reporting discrimination as a performance metric. Given the complexity inherent in predictive modeling for this task, including data availability, data handling, model architecture, and outcome selection, studies vary widely in their methodology and results. Importantly, the majority of studies have not been externally validated or demonstrate important methodological limitations, precluding their implementation into clinical settings. A substantial body of literature has accumulated demonstrating variable internal validity, limited scope, and low potential for clinical deployment. The majority of studies attempt to predict the MCID-the lowest bar of clinical achievement. Though a small proportion of models demonstrate promise and highlight the utility of AI, important methodological limitations need to be addressed moving forward to leverage AI-based applications for clinical deployment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091035 | PMC |
http://dx.doi.org/10.1007/s12178-024-09893-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!