A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Artificial Intelligence for Clinically Meaningful Outcome Prediction in Orthopedic Research: Current Applications and Limitations. | LitMetric

Purpose Of Review: Patient-reported outcome measures (PROM) play a critical role in evaluating the success of treatment interventions for musculoskeletal conditions. However, predicting which patients will benefit from treatment interventions is complex and influenced by a multitude of factors. Artificial intelligence (AI) may better anticipate the propensity to achieve clinically meaningful outcomes through leveraging complex predictive analytics that allow for personalized medicine. This article provides a contemporary review of current applications of AI developed to predict clinically significant outcome (CSO) achievement after musculoskeletal treatment interventions.

Recent Findings: The highest volume of literature exists in the subspecialties of total joint arthroplasty, spine, and sports medicine, with only three studies identified in the remaining orthopedic subspecialties combined. Performance is widely variable across models, with most studies only reporting discrimination as a performance metric. Given the complexity inherent in predictive modeling for this task, including data availability, data handling, model architecture, and outcome selection, studies vary widely in their methodology and results. Importantly, the majority of studies have not been externally validated or demonstrate important methodological limitations, precluding their implementation into clinical settings. A substantial body of literature has accumulated demonstrating variable internal validity, limited scope, and low potential for clinical deployment. The majority of studies attempt to predict the MCID-the lowest bar of clinical achievement. Though a small proportion of models demonstrate promise and highlight the utility of AI, important methodological limitations need to be addressed moving forward to leverage AI-based applications for clinical deployment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091035PMC
http://dx.doi.org/10.1007/s12178-024-09893-zDOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
clinically meaningful
8
current applications
8
treatment interventions
8
majority studies
8
methodological limitations
8
clinical deployment
8
studies
5
intelligence clinically
4
outcome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!