Recently, hydrogels have been widely applied as draw agents in forward osmosis (FO) desalination. This work aims to synthesize bioartificial hydrogel from a blend of sodium alginate (SA) and polyvinyl alcohol (PVA) using epichlorohydrin (ECH) as a crosslinker. Then this prepared hydrogel was applied as a draw agent with cellulose triacetate membrane in a batch (FO) cell. The effects of the PVA content in the polymer blend and the crosslinker dose on the hydrogel's swelling capacity were investigated to optimize the hydrogel's composition. Furthermore, the water flux and the reverse solute flux of the optimum SA/PVA hydrogel were evaluated in a batch (FO) unit under the effect of the hydrogel's particle size, feed solution (FS) temperature, FS concentration, and membrane orientation. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and compression strength tests were used to characterize the prepared hydrogel. Results revealed that the equilibrium swelling ratio (%) of 5228 was achieved with a hydrogel that had 25% PVA and a crosslinking ratio of 0.8. FO experiments revealed that the maximum water flux of 0.845 LMH achieved, when distilled water was used as FS, average hydrogel's particle size was 60 µm, and the FS temperature was 40 °C.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11002025PMC
http://dx.doi.org/10.1038/s41598-024-58533-6DOI Listing

Publication Analysis

Top Keywords

bioartificial hydrogel
8
applied draw
8
prepared hydrogel
8
water flux
8
hydrogel's particle
8
particle size
8
hydrogel
6
synthesis characterization
4
characterization innovative
4
innovative sodium
4

Similar Publications

Fabrication of phospholipid polymer-modified alginate hydrogels for bioartificial pancreas.

J Biosci Bioeng

January 2025

Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan. Electronic address:

The bioartificial pancreas, composed of a semi-permeable hydrogel encapsulating insulin-secreting cells, has attracted attention as a treatment for type 1 diabetes. In this study, we developed phospholipid polymer-modified alginate hydrogel beads that encapsulated spheroids of the pancreatic beta cell line MIN6. The hydrogel beads were composed of methacrylated alginic acid, which enabled both ionic and covalent cross-linking, resulting in a hydrogel that was more stable than conventional alginate hydrogels.

View Article and Find Full Text PDF

Advanced bioengineering strategies broaden the therapeutic landscape for corneal failure.

Front Bioeng Biotechnol

November 2024

Institute for Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France.

The cornea acts as the eye foremost protective layer and is essential for its focusing power. Corneal blindness may arise from physical trauma or conditions like dystrophies, keratitis, keratoconus, or ulceration. While conventional treatments involve medical therapies and donor allografts-sometimes supplemented with keratoprostheses-these options are not suitable for all corneal defects.

View Article and Find Full Text PDF

In live organisms, cells are embedded in tissue-specific extracellular matrix (ECM), which provides chemical and mechanical signals important for cell differentiation, migration, and overall functionality. Careful reproduction of ECM properties in artificial cell scaffolds is necessary to get physiologically relevant results of in vitro studies and produce robust materials for cell and tissue engineering. Nanoarchitectonics is a contemporary way to building complex materials from nano-scale objects of artificial and biological origin.

View Article and Find Full Text PDF

In this study using a discordant, xenogeneic, transplant model we demonstrate the functionality and safety of the first stent-based bioartificial pancreas (BAP) device implanted endovascularly into an artery, harnessing the high oxygen content in blood to support islet viability. The device is a self-expanding nitinol stent that is coated with a bilayer of polytetrafluoroethylene that forms channels to hold islets embedded in a hydrogel. We completed a 1-month study in the nondiabetic swine model (N = 3) to test the safety of the device and to assess islet functionality after device recovery.

View Article and Find Full Text PDF

A computational algorithm for optimal design of a bioartificial organ scaffold architecture.

PLoS Comput Biol

November 2024

Department of Mathematics and Statistics, Texas Tech University, Lubbock, Texas, United States of America.

We develop a computational algorithm based on a diffuse interface approach to study the design of bioartificial organ scaffold architectures. These scaffolds, composed of poroelastic hydrogels housing transplanted cells, are linked to the patient's blood circulation via an anastomosis graft. Before entering the scaffold, the blood flow passes through a filter, and the resulting filtered blood plasma transports oxygen and nutrients to sustain the viability of transplanted cells over the long term.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!