Immunomodulatory peptides, while exhibiting potential antimicrobial, antifungal, and/or antiviral properties, can play a role in stimulating or suppressing the immune system, especially in pathological conditions like breast cancer (BC). Thus, deregulation of these peptides may serve as an immunotherapeutic strategy to enhance the immune response. In this meta-analysis, we utilized single-cell RNA sequencing data and known therapeutic peptides to investigate the deregulation of these peptides in malignant versus normal human breast epithelial cells. We corroborated our findings at the chromatin level using ATAC-seq. Additionally, we assessed the protein levels in various BC cell lines. Moreover, our in-house drug repositioning approach was employed to identify potential drugs that could positively impact the relapse-free survival of BC patients. Considering significantly deregulated therapeutic peptides and their role in BC pathology, our approach aims to downregulate B2M and SLPI, while upregulating PIGR, DEFB1, LTF, CLU, S100A7, and SCGB2A1 in BC epithelial cells through our drug repositioning pipeline. Leveraging the LINCS L1000 database, we propose BRD-A06641369 for B2M downregulation and ST-4070043 and BRD-K97926541 for SLPI downregulation without negatively affecting the MHC complex as a significantly correlated pathway with these two genes. Furthermore, we have compiled a comprehensive list of drugs for the upregulation of other selected immunomodulatory peptides. Employing an immunotherapeutic approach by integrating our drug repositioning pipeline with single-cell analysis, we proposed potential drugs and drug targets to fortify the immune system against BC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11001976PMC
http://dx.doi.org/10.1038/s41540-024-00359-zDOI Listing

Publication Analysis

Top Keywords

drug repositioning
16
breast cancer
8
single-cell analysis
8
immunomodulatory peptides
8
immune system
8
deregulation peptides
8
therapeutic peptides
8
epithelial cells
8
potential drugs
8
repositioning pipeline
8

Similar Publications

Effects of simvastatin on the mevalonate pathway and cell wall integrity of Staphylococcus aureus.

J Appl Microbiol

January 2025

Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Avenida Limeira, 901, Areião, Piracicaba, SP 13414-903, Brazil.

Aims: To investigate the effects of simvastatin as an antimicrobial, considering its influence on the mevalonate pathway and on the bacterial cell wall of Staphylococcus aureus.

Methods And Results: S. aureus ATCC 29213 and 33591 were exposed to simvastatin in the presence of exogenous mevalonate to determine whether mevalonate could reverse the inhibition.

View Article and Find Full Text PDF

In silico drug repurposing at the cytoplasmic surface of human aquaporin 1.

PLoS One

January 2025

Genome and Structural Bioinformatics Group, Faculty of Medicine, Health and Life Science, Swansea University, Swansea, Wales, United Kingdom.

Aquaporin 1 (AQP1) is a key channel for water transport in peritoneal dialysis. Inhibition of AQP1 could therefore impair water transport during peritoneal dialysis. It is not known whether inhibition of AQP1 occurs unintentionally due to off-target interactions of administered medications.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Bordeaux University Hospital, Department of Neurology, Institute of Neurodegenerative Diseases, Bordeaux, France.

Background: Cerebral small vessel disease (cSVD) is a leading cause of stroke and dementia. Its underlying mechanisms remain elusive and specific mechanism-based drugs are lacking.

Method: We integrated more than 2,800 CSF and 4,600 plasma pQTL, derived from the largest proteomic studies so far (SOMAscan 7k and 4k; in up to 35,559 individuals), and the two most prevalent MRI-markers of cSVD (MRI-cSVD, white matter hyperintensities and perivascular spaces burden; in up to 48,454 individuals) in a Mendelian Randomization (MR) framework to identify causal and druggable targets for cSVD.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a devastating form of dementia, and its prevalence is rising as human lifespan increases. Our lab created the AD-BXD mouse model, which expresses AD mutations across a genetically diverse reference panel (BXD), to identify factors that confer resilience to cognitive decline in AD. This model mimics key characteristics of human AD including variation in age of onset and severity of cognitive decline.

View Article and Find Full Text PDF

Background: Cerebral amyloid angiopathy (CAA), the accumulation of amyloid proteins in the cerebral vasculature, increases the risk of stroke and vascular cognitive impairment and dementia (VCID). Not only is there no treatment for CAA, but the condition is also highly comorbid with Alzheimer's disease (AD), and its presence may serve as a contraindication to treating patients with anti-amyloid therapies due to an increased risk of hemorrhage and edema. Therefore, it is crucial to identify novel treatments for individuals with CAA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!