Supercapacitors have emerged as highly efficient energy storage devices, relying on electrochemical processes. The performance of these devices can be influenced by several factors, with key considerations including the selection of electrode materials and the type of electrolyte utilized. Transition metal oxide electrodes are commonly used in supercapacitors, as they greatly influence the electrochemical performance of these devices. Nonetheless, ferrites' low energy density poses a limitation. Hence, it is crucial to create electrode materials featuring unique and distinct structures, while also exploring the ideal electrolyte types, to enhance the electrochemical performance of supercapacitors incorporating magnesium ferrites (MF). In this study, we effectively prepared magnesium ferrites (MgFeO) supported on activated carbon (AC) derived from orange peels (OP) using a simple hydrothermal method. The resulting blends underwent comprehensive characterization employing various methods, including FTIR, XRD, TEM, SEM, EDX, and mapping analysis. Moreover, the electrochemical performance of MgFeO@AC composites was evaluated using GCD and CV techniques. Remarkably, the MF45-AC electrode material showed exceptional electrochemical behavior, demonstrating a specific capacitance of 870 F·g within current density of 1.0 A g and potential windows spanning from 0 to 0.5 V. Additionally, the prepared electrodes displayed exceptional cycling stability, with AC, MF, and MF45-AC retaining 89.6%, 94.2%, and 95.1% of their initial specific capacitance, respectively, even after 5000 cycles. These findings underscore the potential of MF-AC composites as superior electrode materials for supercapacitors. The development of such composites, combined with tailored electrolyte concentrations, holds significant promise for advancing the electrochemical performance and energy density of supercapacitor devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11001879 | PMC |
http://dx.doi.org/10.1038/s41598-024-54942-9 | DOI Listing |
Talanta
December 2024
School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India. Electronic address:
The electrochemical biosensor has brought a paradigm shift in the field of sensing due to its fast response and easy operability. The performance of electrochemical sensors can be modified by coupling them with various metal oxides, nanomaterials, and nanocomposites. Hydrogen peroxide is a short-lived reactive oxygen species that plays a crucial role in various physiological and biological processes.
View Article and Find Full Text PDFTalanta
December 2024
The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523700, China. Electronic address:
This research presents a systematic review of the application of metal-organic frameworks (MOFs) to detect volatile organic compounds (VOCs). VOCs, compounds with high vapor pressure at ambient temperature and normal pressure, are widely present in a variety of industrial and living environments. VOCs are not only hazardous to the environment but also have a severe impact on human health.
View Article and Find Full Text PDFNat Commun
January 2025
Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
Electrochemical reduction of carbon dioxide (CO) into sustainable fuels and base chemicals requires precise control over and understanding of activity, selectivity and stability descriptors of the electrocatalyst under operation. Identification of the active phase under working conditions, but also deactivation factors after prolonged operation, are of the utmost importance to further improve electrocatalysts for electrochemical CO conversion. Here, we present a multiscale in situ investigation of activation and deactivation pathways of oxide-derived copper electrocatalysts under CO reduction conditions.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Multiscale Computational Materials Facility & Materials Genome Institute, School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, PR China. Electronic address:
Localized high-concentration electrolytes (LHCEs) offer a new methodology to improve the functionality of conventional electrolytes. Understanding the impact of antisolvents on bulk electrolytes is critical to the construction of sophisticated LHCEs. However, the mechanism of how antisolvent modulates the electrochemical reactivity of the solvation structure in LHCEs remains unclear.
View Article and Find Full Text PDFNano Lett
January 2025
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology of Clean Energy, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China.
Solid-state metallic potassium batteries (SSMPBs) afresh have attracted incremental attention because of their potential to supplement solid-state metallic lithium batteries. However, SSMPBs suffer poor electrochemical performances due to the low ionic conductivity of solid electrolytes and huge electrode/electrolyte interfacial resistance. Herein, high-rate SSMPBs are achieved by in situ ring-opening polymerization of 1,3-dioxolane with succinonitrile as a plasticizer and Al(OTf) as the catalyst, where the succinonitrile enables short-chain polyether electrolytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!