Most current approaches to establish subgroups of depressed patients for precision medicine aim to rely on biomarkers that require highly specialized assessment. Our present aim was to stratify participants of the UK Biobank cohort based on three readily measurable common independent risk factors, and to investigate depression genomics in each group to discover common and separate biological etiology. Two-step cluster analysis was run separately in males (n = 149,879) and females (n = 174,572), with neuroticism (a tendency to experience negative emotions), body fat percentage, and years spent in education as input variables. Genome-wide association analyses were implemented within each of the resulting clusters, for the lifetime occurrence of either a depressive episode or recurrent depressive disorder as the outcome. Variant-based, gene-based, gene set-based, and tissue-specific gene expression test were applied. Phenotypically distinct clusters with high genetic intercorrelations in depression genomics were found. A two-cluster solution was the best model in each sex with some differences including the less important role of neuroticism in males. In females, in case of a protective pattern of low neuroticism, low body fat percentage, and high level of education, depression was associated with pathways related to olfactory function. While also in females but in a risk pattern of high neuroticism, high body fat percentage, and less years spent in education, depression showed association with complement system genes. Our results, on one hand, indicate that alteration of olfactory pathways, that can be paralleled to the well-known rodent depression models of olfactory bulbectomy, might be a novel target towards precision psychiatry in females with less other risk factors for depression. On the other hand, our results in multi-risk females may provide a special case of immunometabolic depression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11002013PMC
http://dx.doi.org/10.1038/s41398-024-02867-2DOI Listing

Publication Analysis

Top Keywords

body fat
12
fat percentage
12
depression
8
precision medicine
8
risk factors
8
depression genomics
8
percentage years
8
years spent
8
spent education
8
education depression
8

Similar Publications

Forty Years of the Use of Cells for Cartilage Regeneration: The Research Side.

Pharmaceutics

December 2024

Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy.

The treatment of articular cartilage damage has always represented a problem of considerable practical interest for orthopedics. Over the years, many surgical techniques have been proposed to induce the growth of repairing tissue and limit degeneration. In 1994, the turning point occurred: implanted autologous cells paved the way for a new treatment option based more on regeneration than repair.

View Article and Find Full Text PDF

Active Vitamin D Ameliorates Arsenite-Induced Thyroid Dysfunction in Sprague-Dawley Rats by Inhibiting the Toll-like Receptor 4/NF-KappaB-Mediated Inflammatory Response.

Toxics

December 2024

Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China.

Arsenic, a well-known environmental endocrine disruptor, exerts interference on the body's endocrine system. Our previous investigations have demonstrated that chronic exposure to sodium arsenite (NaAsO) can induce thyroid damage and dysfunction in Sprague-Dawley (SD) rats. Vitamin D (VD) is an indispensable fat-soluble vitamin that plays a crucial role in maintaining thyroid health.

View Article and Find Full Text PDF

The Effects of Novel Co-Amorphous Naringenin and Fisetin Compounds on a Diet-Induced Obesity Murine Model.

Nutrients

December 2024

Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX, México 14080, Mexico.

Background/objective: In recent studies, it has been shown that dietary bioactive compounds can produce health benefits; however, it is not known whether an improvement in solubility can enhance their biological effects. Thus, the aim of this work was to study whether co-amorphous (CoA) naringenin or fisetin with enhanced solubility modify glucose and lipid metabolism, thermogenic capacity and gut microbiota in mice fed a high-fat, high-sucrose (HFSD) diet.

Methods: Mice were fed with an HFSD with or without CoA-naringenin or CoA-fisetin for 3 months.

View Article and Find Full Text PDF

Risk Factors Related to Resting Metabolic Rate-Related Gene Variation in Children with Overweight/Obesity: 3-Year Panel Study.

Nutrients

December 2024

Department of Food & Nutrition & Research Institute of Obesity Sciences, Sungshin Women's University, Dobongro-76gagil-55, Kangbuk-ku, Seoul 01133, Republic of Korea.

Unlabelled: This study investigated how the gene variation related to RMR alteration affects risk factors of obese environments in children with obesity aged 8-9.

Methods: Over a three-year follow-up period, 63.3% of original students participated.

View Article and Find Full Text PDF

: The prevalence of metabolic syndrome in children has been increasing, raising concerns about early detection and clinical management. Adipokines, which are secreted by adipose tissue, play a critical role in metabolic regulation and inflammation, while gamma-glutamyl transferase (GGT), as a liver enzyme, is linked to oxidative stress and metabolic disorders. The objective was to examine the association of circulating adipokines and GGT with metabolic syndrome risk in school-aged children from Northeast Mexico.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!