Organic mechanoluminescence materials, featuring dual emission and ultralong phosphorescence characteristics, exhibit significant potential for applications in real-time stress sensing, pressure-sensitive lighting, advanced security marking techniques, and material breakage monitoring. However, due to immature molecular design strategies and unclear luminescence mechanisms, these materials remain rarely reported. In this study, we propose a valuable molecular design strategy to achieve dual-channel mechano-phosphorescence. By introducing the arylphosphine oxide group into a highly twisted molecular framework, enhanced intra- and intermolecular interactions could be achieved within rigid structures, leading to dual-channel mechanoluminescence with greatly promoted ultralong phosphorescence. Further investigations reveal the substantial boosting effect of intra- and intermolecular interactions on mechanoluminescence and ultralong phosphorescence properties by locking the highly twisted molecular skeleton. This work provides a concise and guiding route to develop novel smart responsive luminescence materials for widespread applications in material science.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11001961 | PMC |
http://dx.doi.org/10.1038/s41377-024-01421-5 | DOI Listing |
Sci Bull (Beijing)
December 2024
Department of Chemistry, Laboratory of Advance Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, China. Electronic address:
Hierarchical organization is prevalent in nature, yet the artificial construction of hierarchical materials featuring asymmetric structures remains a big challenge. Herein, we report a stress-induced self-assembly strategy for the synthesis of hierarchically twisted stripe arrays (HTSAs) with mesoporous structures. A soft and thin mesostructured film assembled by micelles and TiO oligomers is the prerequisite.
View Article and Find Full Text PDFACS Nano
January 2025
Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
Strategies to acquire high-efficiency luminogens that emit in the second near-infrared (NIR-II, 1000-1700 nm) range are still rare due to the impediment of the energy gap law. Herein, a feasible strategy is pioneered by installing large-volume encumbrances in a confined space to intensify the repulsive interactions arising from overlapping electron densities. The experimental results, including smaller coordinate displacement, reduced reorganization energy, and suppressed internal conversion, demonstrate that the repulsive interactions assist in the inhibition of radiationless deactivation.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Department of Pesticide Science, College of Plant Protection, Shenyang Agricultural University, Shenyang, China.
Background: Botrytis cinerea is one of the most serious plant diseases and severely threatens agricultural production. The rapidly intensifying resistance makes most commercial chemical fungicides lose control efficacy. Developing new fungicides with novel structures and modes of action is an effective measure to solve this problem.
View Article and Find Full Text PDFChem Rev
January 2025
Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States.
Two-dimensional transition metal dichalcogenides (2D TMDs) are a promising class of functional materials for fundamental physics explorations and applications in next-generation electronics, catalysis, quantum technologies, and energy-related fields. Theory and simulations have played a pivotal role in recent advancements, from understanding physical properties and discovering new materials to elucidating synthesis processes and designing novel devices. The key has been developments in theory, deep learning, molecular dynamics, high-throughput computations, and multiscale methods.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
The University of Tennessee Knoxville, Chemistry, UNITED STATES OF AMERICA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!