Dual-channel mechano-phosphorescence: a combined locking effect with twisted molecular structures and robust interactions.

Light Sci Appl

Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.

Published: April 2024

Organic mechanoluminescence materials, featuring dual emission and ultralong phosphorescence characteristics, exhibit significant potential for applications in real-time stress sensing, pressure-sensitive lighting, advanced security marking techniques, and material breakage monitoring. However, due to immature molecular design strategies and unclear luminescence mechanisms, these materials remain rarely reported. In this study, we propose a valuable molecular design strategy to achieve dual-channel mechano-phosphorescence. By introducing the arylphosphine oxide group into a highly twisted molecular framework, enhanced intra- and intermolecular interactions could be achieved within rigid structures, leading to dual-channel mechanoluminescence with greatly promoted ultralong phosphorescence. Further investigations reveal the substantial boosting effect of intra- and intermolecular interactions on mechanoluminescence and ultralong phosphorescence properties by locking the highly twisted molecular skeleton. This work provides a concise and guiding route to develop novel smart responsive luminescence materials for widespread applications in material science.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11001961PMC
http://dx.doi.org/10.1038/s41377-024-01421-5DOI Listing

Publication Analysis

Top Keywords

twisted molecular
12
ultralong phosphorescence
12
dual-channel mechano-phosphorescence
8
molecular design
8
highly twisted
8
intra- intermolecular
8
intermolecular interactions
8
molecular
5
mechano-phosphorescence combined
4
combined locking
4

Similar Publications

Stress-induced self-assembly of hierarchically twisted stripe arrays.

Sci Bull (Beijing)

December 2024

Department of Chemistry, Laboratory of Advance Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, China. Electronic address:

Hierarchical organization is prevalent in nature, yet the artificial construction of hierarchical materials featuring asymmetric structures remains a big challenge. Herein, we report a stress-induced self-assembly strategy for the synthesis of hierarchically twisted stripe arrays (HTSAs) with mesoporous structures. A soft and thin mesostructured film assembled by micelles and TiO oligomers is the prerequisite.

View Article and Find Full Text PDF

Intramolecular Repulsive Interactions Enable High Efficiency of NIR-II Aggregation-Induced Emission Luminogens for High-Contrast Glioblastoma Imaging.

ACS Nano

January 2025

Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.

Strategies to acquire high-efficiency luminogens that emit in the second near-infrared (NIR-II, 1000-1700 nm) range are still rare due to the impediment of the energy gap law. Herein, a feasible strategy is pioneered by installing large-volume encumbrances in a confined space to intensify the repulsive interactions arising from overlapping electron densities. The experimental results, including smaller coordinate displacement, reduced reorganization energy, and suppressed internal conversion, demonstrate that the repulsive interactions assist in the inhibition of radiationless deactivation.

View Article and Find Full Text PDF

Background: Botrytis cinerea is one of the most serious plant diseases and severely threatens agricultural production. The rapidly intensifying resistance makes most commercial chemical fungicides lose control efficacy. Developing new fungicides with novel structures and modes of action is an effective measure to solve this problem.

View Article and Find Full Text PDF

Two-Dimensional Transition Metal Dichalcogenides: A Theory and Simulation Perspective.

Chem Rev

January 2025

Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States.

Two-dimensional transition metal dichalcogenides (2D TMDs) are a promising class of functional materials for fundamental physics explorations and applications in next-generation electronics, catalysis, quantum technologies, and energy-related fields. Theory and simulations have played a pivotal role in recent advancements, from understanding physical properties and discovering new materials to elucidating synthesis processes and designing novel devices. The key has been developments in theory, deep learning, molecular dynamics, high-throughput computations, and multiscale methods.

View Article and Find Full Text PDF
Article Synopsis
  • Single crystals that lack translational symmetry have been observed in different materials, particularly in polymers where unique structures like twisted crystals and non-flat single crystals appear.
  • Researchers have discovered scrolled single crystals of poly(L-lactic acid) (PLLA), a biodegradable polymer, which differ from the typical flat crystals formed in solution.
  • The scrolled structure of PLLA crystals is influenced by factors such as the polymer's molecular weight and the presence of polymer chain ends, suggesting a novel mechanism for disrupting translational symmetry in the growth of polymer single crystals.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!