Due to the extended generation cycle of trees, the breeding process for forest trees tends to be time-consuming. Genetic engineering has emerged as a viable approach to expedite the genetic breeding of forest trees. However, current genetic engineering techniques employed in forest trees often utilize continuous expression promoters such as CaMV 35S, which may result in unintended consequences by introducing genes into non-target tissues. Therefore, it is imperative to develop specific promoters for forest trees to facilitate targeted and precise design and breeding. In this study, we utilized single-cell RNA-Seq data and co-expression network analysis during wood formation to identify three vascular tissue-specific genes in poplar, PP2-A10, PXY, and VNS07, which are expressed in the phloem, cambium/expanding xylem, and mature xylem, respectively. Subsequently, we cloned the promoters of these three genes from '84K' poplar and constructed them into a vector containing the eyGFPuv visual selection marker, along with the 35S mini enhancer to drive GUS gene expression. Transgenic poplars expressing the Pro::GUS, Pro::GUS, and Pro::GUS constructs were obtained. To further elucidate the tissue specificity of these promoters, we employed qPCR, histochemical staining, and GUS enzyme activity. Our findings not only establish a solid foundation for the future utilization of these promoters to precisely express of specific functional genes in stems but also provide a novel perspective for the modular breeding of forest trees.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2024.112083 | DOI Listing |
Front Antibiot
December 2023
Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, United States.
Antimicrobial resistance (AMR) is a challenge because it is associated with worse patient outcomes. To solve the problem will take development of interventions and policies which improve patient outcomes by prolonging survival, improving patient symptoms, function and quality of life. Logically, we should look to focusing resources in areas that would have the greatest impact on public health.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Life Science, Henan Agricultural University, Zhengzhou, China.
Background: Assessing the current status and identifying the mechanisms threatening endangered plants are significant challenges and fundamental to biodiversity conservation, particularly for protecting Tertiary relict trees and plant species with extremely small populations (PSESP). Ulmus elongata (Ulmus, Ulmaceae) with high values for the ornamental application, is a Tertiary relict tree species and one of the members from PSESP in China. Currently, the wild populations of U.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Gynecology and Obstetrics, First Hospital of Jilin University, Changchun, 130031, Jilin, China.
Preeclampsia (PE) is a major pregnancy-specific cardiovascular complication posing latent life-threatening risks to mothers and neonates. The contribution of immune dysregulation to PE is not fully understood, highlighting the need to explore molecular markers and their relationship with immune infiltration to potentially inform therapeutic strategies. We used bioinformatics tools to analyze gene expression data from the Gene Expression Omnibus (GEO) database using the GEOquery package in R.
View Article and Find Full Text PDFEcology
January 2025
Smithsonian Tropical Research Institute, Balboa, Republic of Panama.
Forests sequester a substantial portion of anthropogenic carbon emissions. Many open questions concern how. We address two of these questions.
View Article and Find Full Text PDFSci Total Environ
January 2025
Graduate Program in Biodiversity and Nature Conservation, Federal University of Juiz de Fora (UFJF), Minas Gerais State, Brazil; Plant Ecology Laboratory, Department of Botany, Federal University of Juiz de Fora, Juiz de Fora (UFJF), Minas Gerais State, Brazil. Electronic address:
Research about patterns of aboveground carbon stock (AGC) across different tropical forest types is central to climate change mitigation efforts. However, the aboveground carbon stock (AGC) quantification for Brazilian cloud forest ecosystems along the altitudinal gradient is still scarce. We aimed to evaluate the effects of abiotic and biotic on AGC and the AGC distribution between species and families of tree communities along an altitudinal Brazilian Atlantic cloud forest gradient of the Mantiqueira Mountain Range, Southeastern Brazil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!