DNA repair is essential to maintain genomic integrity and may affect colorectal cancer (CRC) patients' risk of secondary cancers, treatment efficiency, and susceptibility to various comorbidities. Bioactive compounds identified in plant foods have the potential to modulate DNA repair mechanisms, but there is limited evidence of how dietary factors may affect DNA repair activity in CRC patients in remission after surgery. The aim of this study was to investigate the effect of a 6-month personalized intensive dietary intervention on DNA repair activity in post-surgery CRC patients (stage I-III). The present study included patients from the randomized controlled trial CRC-NORDIET, enrolled 2-9 months after surgery. The intervention group received an intensive dietary intervention emphasizing a prudent diet with specific plant-based foods suggested to dampen inflammation and oxidative stress, while the control group received only standard care advice. The comet-based in vitro repair assay was applied to assess DNA repair activity, specifically base excision repair (BER), in peripheral blood mononuclear cells (PBMCs). Statistical analyses were conducted using gamma generalized linear mixed models (Gamma GLMM). A total of 138 CRC patients were included, 72 from the intervention group and 66 from the control group. The BER activity in the intervention group did not change significantly compared to the control group. Our findings revealed a substantial range in both inter- and intra-individual levels of BER. In conclusion, the results do not support an effect of dietary intervention on BER activity in post-surgery CRC patients during a 6-month intervention period.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2024.04.211DOI Listing

Publication Analysis

Top Keywords

dna repair
20
dietary intervention
16
crc patients
16
intensive dietary
12
repair activity
12
intervention group
12
control group
12
personalized intensive
8
intervention
8
base excision
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!