To investigate the interactive effects of chronic ocean acidification and warming (OAW) on the growth, survival, and physiological responses of sea urchins, adults of the temperate sea urchin Strongylocentrotus intermedius were incubated separately/jointly in acidic (ΔpH = -0.5 units) and thermal (ΔT = +3.0 °C) seawater for 120 days under lab-controlled conditions based on the projected ocean pH and temperature for 2100 put forward by the Intergovernmental Panel on Climate Change (IPCC). Survival rate (SR), average food consumption rate (FCR), gut index (GuI), specific growth rate (SGR), digestive capability, energy production, and antioxidant capability were subsequently determined. The results showed that 1) the SR, FCR, GuI and SGR decreased sharply under OAW conditions. Significant interactive effects of OAW on SR and SGR were observed at 120 days post-incubation (dpi), and on FCR this occurred at 90 dpi. 2) OAW altered the activities of both digestive and antioxidant enzymes. There were significant interaction effects of OAW on the activities of amylase, trehalase, and superoxide dismutase. 3) The relative gene expression levels and activities of key enzymes involved in glycometabolism pathways (i.e., glycolysis and the tricarboxylic acid cycle) were significantly affected by OAW, resulting in an alteration of the total ATP content in the sea urchins. Interaction effects of OAW were observed in both relative gene expression and the activity of enzymes involved in glycolysis (hexokinase), the transformation of glycolysis end-products (lactate dehydrogenase), the tricarboxylic acid cycle (citrate synthetase), and ATP production (Na/K-ATPase). The data from this study will enrich our knowledge concerning the combined effects of global climate change on the survival, growth, and physiological responses of echinoderms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.141907 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
The harlequin ladybird, , is a predatory beetle used globally to control pests such as aphids and scale insects. Originating from East Asia, this species has become highly invasive since its introduction in the late 19th century to Europe and North America, posing a threat to local biodiversity. Intraguild predation is hypothesized to drive the success of this invasive species, but the underlying mechanisms remain unknown.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Institute of Science and Technology Austria, AT-3400 Klosterneuburg, Austria.
Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.
Emulsion interface engineering has been widely employed for the synthesis of nanomaterials with various morphologies. However, the instability of the liquid-liquid interface and uncertain interfacial interactions impose significant limitations on controllable fabrications. Here, we developed a liquid-nano-liquid interface-oriented anisotropic encapsulation strategy for fabricating asymmetric nanohybrids.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Medical Neuroscience, SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
Ubiquitin-proteasomal degradation of K/Cl cotransporter 2 (KCC2) in the ventral posteromedial nucleus (VPM) has been demonstrated to serve as a common mechanism by which the brain emerges from anesthesia and regains consciousness. Ubiquitin-proteasomal degradation of KCC2 during anesthesia is driven by E3 ligase Fbxl4. However, the mechanism by which ubiquitinated KCC2 is targeted to the proteasome has not been elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!