Uneven response of phytoplankton-bacteria coupling under Saharan dust pulse and ultraviolet radiation in the south-western Mediterranean Sea.

Sci Total Environ

Instituto Universitario de Investigación del Agua, Universidad de Granada, C/ Ramón y Cajal, nº4, 18071, Granada, Spain; Departamento de Ecología, Universidad de Granada, Campus Fuentenueva s/n, 18071 Granada, Spain. Electronic address:

Published: June 2024

The microbial carbon (C) flux in the ocean is a key functional process governed by the excretion of organic carbon by phytoplankton (EOC) and heterotrophic bacterial carbon demand (BCD). Ultraviolet radiation (UVR) levels in upper mixed layers and increasing atmospheric dust deposition from arid regions may alter the degree of coupling in the phytoplankton-bacteria relationship (measured as BCD:EOC ratio) with consequences for the C-flux through these compartments in marine oligotrophic ecosystem. Firstly, we performed a field study across the south-western (SW) Mediterranean Sea to assess the degree of coupling (BCD:EOC) and how it may be related to metabolic balance (total primary production: community respiration; PP:CR). Secondly, we conducted a microcosm experiment in two contrasting areas (heterotrophic nearshore and autotrophic open sea) to test the impact of UVR and dust interaction on microbial C flux. In the field study, we found that BCD was not satisfied by EOC (i.e., BCD:EOC >1; uncoupled phytoplankton-bacteria relationship). BCD:EOC ratio was negatively related to PP:CR ratio across the SW Mediterranean Sea. A spatial pattern emerged, i.e. in autotrophic open sea stations uncoupling was less severe (BCD:EOC ranged 1-2), whereas heterotrophic nearshore stations uncoupling was more severe (BCD:EOC > 2). In the experimental study, in the seawater both enriched with dust and under UVR, BCD:EOC ratio decreased by stimulating autotrophic processes (particulate primary production (PP) and EOC) in the heterotrophic nearshore area, whereas BCD:EOC increased by stimulating heterotrophic processes [heterotrophic bacterial production (HBP), bacterial growth efficiency (BGE), bacterial respiration (BR)] in the autotrophic open sea. Our results show that this spatial pattern could be reversed under future UVR × Dust scenario. Overall, the impact of greater dust deposition and higher UVR levels will alter the phytoplankton-bacteria C-flux with consequences for the productivity of both communities, their standing stocks, and ultimately, the ecosystem's metabolic balance at the sea surface.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.172220DOI Listing

Publication Analysis

Top Keywords

mediterranean sea
12
bcdeoc ratio
12
heterotrophic nearshore
12
autotrophic open
12
open sea
12
ultraviolet radiation
8
south-western mediterranean
8
eoc heterotrophic
8
uvr levels
8
dust deposition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!