Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The x-ray radiation dose in computed tomography (CT) examination has been a major concern for patients. Lowing the tube current and exposure time in data acquisition is a straightforward and cost-effective strategy to reduce the x-ray radiation dose. However, this will inevitably increase the noise fluctuations in measured projection data, and the corresponding CT image quality will be severely degraded if noise suppression is not performed during image reconstruction. To reconstruct high-quality low-dose CT image, we present a spatial-radon domain total generalized variation (SRDTGV) regularization for statistical iterative reconstruction (SIR) based on penalized weighted least-squares (PWLS) principle, which is called PWLS-SRDTGV for simplicity. The presented PWLS-SRDTGV model can simultaneously reconstruct high-quality CT image in space domain and its corresponding projection in radon domain. An efficient split Bregman algorithm was applied to minimize the cost function of the proposed reconstruction model. Qualitative and quantitative studies were performed to evaluate the effectiveness of the PWLS-SRDTGV image reconstruction algorithm using a digital 3D XCAT phantom and an anthropomorphic torso phantom. The experimental results demonstrate that PWLS-SRDTGV algorithm achieves notable gains in noise reduction, streak artifact suppression, and edge preservation compared with competing reconstruction approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/ad3c0b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!