Background: The Relative Biological Effectiveness (RBE) of kilovoltage photon beams has been previously investigated in vitro and in silico using analytical methods. The estimated values range from 1.03 to 1.82 depending on the methodology and beam energies examined.

Purpose: The focus of this work was to independently estimate RBE values for a range of clinically used kilovoltage beams (70-200 kVp) while investigating the suitability of using TOPAS-nBio for this task.

Methods: Previously validated spectra of clinical beams were used to generate secondary electron spectra at several depths in a water tank phantom via TOPAS Monte Carlo (MC) simulations. Cell geometry was irradiated with the secondary electrons in TOPAS-nBio MC simulations. The deposited dose and the calculated number of DNA strand breaks were used to estimate RBE values.

Results: Monoenergetic secondary electron simulations revealed the highest direct and indirect double strand break yield at approximately 20 keV. The average RBE value for the kilovoltage beams was calculated to be 1.14.

Conclusions: TOPAS-nBio was successfully used to estimate the RBE values for a range of clinical radiotherapy beams. The calculated value was in agreement with previous estimates, providing confidence in its clinical use in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.17060DOI Listing

Publication Analysis

Top Keywords

kilovoltage beams
12
values range
12
relative biological
8
biological effectiveness
8
double strand
8
strand break
8
monte carlo
8
carlo simulations
8
rbe kilovoltage
8
estimate rbe
8

Similar Publications

Purpose: Nanoparticles (NPs) as radiosensitizers present a promising strategy for enhancing radiotherapy effectiveness, but their potential is significantly influenced by the properties of their surface coating, which can impact treatment outcomes. Most Monte Carlo studies have focused on metallic NPs without considering the impact of coating layers on radiosensitization. In this study, we aim to assess both the physical and radiobiological effects of nanoparticle coatings in nanoparticle-based radiation therapy.

View Article and Find Full Text PDF

Purpose: To use Monte Carlo simulations to study the absorbed-dose energy dependence of GAFChromic EBT3 and EBT4 films for 5-200 MeV electron beams and 100 keV-15 MeV photon beams considering two film compositions: a previous EBT3 composition (Bekerat et al.) and the final composition of EBT3/current composition of EBT4 (Palmer et al.).

View Article and Find Full Text PDF

Assessing the deviation from the inverse square law for orthovoltage beams with closed-ended applicators Part II: 30 cm FSD applicators.

Appl Radiat Isot

December 2024

Cancer Care Program, Dr. H. Bliss Murphy Cancer Center, St. John's, Newfoundland, Canada; Department of Physics, Toronto Metropolitan University, Toronto, Ontario, Canada. Electronic address:

Dose falls-off faster than the inverse square law (ISL) for orthovoltage beams with closed-ended applicators. This work investigates the discrepancy for 30 cm FSD applicators. When using the ISL alone, the maximum dosimetric error would be 3% and 5% at 10 mm and 20 mm from the applicator, respectively, and increases with larger distances.

View Article and Find Full Text PDF

Background: Radiochromic film (RCF) dosimeters with their high spatial resolution and tissue equivalent properties are conveniently used for two-dimensional and small-field dosimetry. OC-1 is a new model of RCF dosimeter that was commercially introduced recently. Due to its novelty there is a need to characterize its response in various radiation beam types.

View Article and Find Full Text PDF

Background: Coincidence of the treatment and imaging isocenter coordinates is required to safely perform small-margin treatments, such as stereotactic radiosurgery of multiple brain metastases. A comprehensive and direct methodology for verifying concordance of kilovoltage cone-beam computed tomography (kV-CBCT) and treatment coordinates using an x-ray CT-based polymer gel dosimeter (dGEL) and onboard kV-CBCT was previously reported. Using this methodology, we tested the ability of a new commercially available x-ray CT-based polymer dGEL with a rapid response to provide efficient quality assurance (QA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!