Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We investigate the ultrafast vibronic dynamics triggered by intense femtosecond infrared pulses in small molecules. Our study is based on numerical simulations performed with 2D model molecules and analyzed in the perspective of the renowned Lochfrass and bond-softening models. We give a new interpretation of the observed nuclear wave packet dynamics with a focus on the phase of the bond oscillations. Our simulations also reveal intricate features in the field-induced nuclear motion that are not accounted for by existing models. Our analyses assign these features to strong dynamical correlations between the active electron and the nuclei, which significantly depend on the carrier envelope phase of the pulse, even for relatively "long" pulses, which should make them experimentally observable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.3c07833 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!