Milk: A Natural Guardian for the Gut Barrier.

J Agric Food Chem

College of Food Science and Engineering, Jilin University, Changchun 130062, China.

Published: April 2024

The gut barrier plays an important role in health maintenance by preventing the invasion of dietary pathogens and toxins. Disruption of the gut barrier can cause severe intestinal inflammation. As a natural source, milk is enriched with many active constituents that contribute to numerous beneficial functions, including immune regulation. These components collectively serve as a shield for the gut barrier, protecting against various threats such as biological, chemical, mechanical, and immunological threats. This comprehensive review delves into the active ingredients in milk, encompassing casein, α-lactalbumin, β-lactoglobulin, lactoferrin, the milk fat globular membrane, lactose, transforming growth factor, and glycopeptides. The primary focus is to elucidate their impact on the integrity and function of the gut barrier. Furthermore, the implications of different processing methods of dairy products on the gut barrier protection are discussed. In conclusion, this study aimed to underscore the vital role of milk and dairy products in sustaining gut barrier health, potentially contributing to broader perspectives in nutritional sciences and public health.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.3c06861DOI Listing

Publication Analysis

Top Keywords

gut barrier
28
dairy products
8
gut
7
barrier
7
milk
5
milk natural
4
natural guardian
4
guardian gut
4
barrier gut
4
barrier plays
4

Similar Publications

Deciphering the colostral-immunity transfer: from mammary gland to neonates small intestine.

Vet Res Commun

January 2025

Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.

Colostrum, the initial mammary secretion produced by various mammals following birth, is a conduit for maternal immunity transfer in diverse mammalian species. Concurrently, many cellular processes are occurring in the neonatal small intestine to prepare it to receive molecular signals from a superfood essential for the neonate's health and development. During the prepartum colostrum secretion, the newborn intestine undergoes transient alterations in the intestinal barrier, primarily regulating immunoglobulin absorption.

View Article and Find Full Text PDF

High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.

View Article and Find Full Text PDF

Natural plant-derived polysaccharides exhibit substantial potential for treating ulcerative colitis (UC) owing to their anti-inflammatory and antioxidant properties and favorable safety profiles. However, their practical application faces several challenges, including structural instability in gastric acid, imprecise targeting of inflamed regions, and limited intestinal retention times. To address these limitations, pH-responsive, colon-targeting microspheres (pWGPAC MSs) are developed for delivering phosphorylated wild ginseng polysaccharides (pWGP) to alleviate UC.

View Article and Find Full Text PDF

Background: The relationship between gut microbiota composition, lifestyles, and colonic transit time (CTT) remains poorly understood. This study investigated associations among gut microbiota profiles, diet, lifestyles, and CTT in individuals with subjective constipation.

Methods: We conducted a secondary analysis of data from our randomized clinical trial, examining gut microbiota composition, CTT, and dietary intake in baseline and final assessments of 94 participants with subjective constipation.

View Article and Find Full Text PDF

Metabolic alterations, including hypermetabolism, lipid imbalances, and glucose dysregulation, are pivotal contributors to the onset and progression of Amyotrophic Lateral Sclerosis (ALS). These changes exacerbate systemic energy deficits, heighten oxidative stress, and fuel neuroinflammation. Simultaneously, gastrointestinal dysfunction and gut microbiota (GM) dysbiosis intensify disease pathology by driving immune dysregulation, compromising the intestinal barrier, and altering gut-brain axis (GBA) signaling, and lastly advancing neurodegeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!