Metal-based nanoparticles (MNPs) are promoted as effective compounds in the treatment of bacterial infections and as possible alternatives to antibiotics. These MNPs are known to affect a broad spectrum of microorganisms using a multitude of strategies, including the induction of reactive oxygen species and interaction with the inner structures of the bacterial cells. The aim of this review was to summarise the latest studies about the effect of metal-based nanoparticles on pathogenic bacterial biofilm formed in wounds, using the examples of Gram-positive bacterium and Gram-negative bacterium , as well as provide an overview of possible clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.12968/jowc.2024.33.Sup4a.xcix | DOI Listing |
ACS Appl Nano Mater
January 2024
Department of Chemistry, University of Central Florida, Orlando, Florida 32816 (USA).
Understanding the origin of enhanced catalytic activity is critical to heterogeneous catalyst design. This is especially important for non-noble metal-based catalysts, notably metal oxides, which have recently emerged as viable alternatives for numerous thermal catalytic processes. For thermal catalytic reduction/hydrogenation using metal oxide nanoparticles, enhanced catalytic performance is typically attributed to increased surface area and oxygen vacancies.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, PR China.
Heteroatom-doped carbon materials are widely used to improve the electrocatalytic oxidation of methanol; however, the underlying mechanisms driving this enhancement remain poorly understood. A major challenge lies in developing non-doped carbon supports with tunable intrinsic defect types tailored for metal-based catalysts. In this study, we synthesize a series of ordered mesoporous carbon (OMC) supports with adjustable edge defect densities by varying roasting temperatures and employing a zinc (Zn) evaporation strategy to systematically investigate the impact of edge defects on methanol oxidation reaction (MOR) performance.
View Article and Find Full Text PDFInt J Pharm
December 2024
Department of Life Sciences, Christ University, Bangalore 560029, Karnataka, India. Electronic address:
The biosynthesis of nanomaterials is a vast and expanding field of study due to their applications in a variety of fields, particularly the pharmaceutical and biomedical fields. Various synthetic routes, including physical and chemical methods, have been developed in order to generate metal nanoparticles (NPs) with definite shapes and sizes. In this review, focused on the recent advancements in the green synthetic methods for the generation of silver, zinc and copper NPs with simple and eco-friendly approaches and the potential of the biosynthesized metal and metal oxide NPs as alternative and therapeutic agent for the treatment of inflammatory diseases.
View Article and Find Full Text PDFAdv Mater
December 2024
Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
Cisplatin is widely used in clinical cancer treatment; however, its application is often hindered by severe side effects, particularly inherent or acquired resistance of target cells. To address these challenges, an effective strategy is to modify the metal core of the complex and introduce alternative coordination modes or valence states, leading to the development of a series of metal complexes, such as platinum (IV) prodrugs and cyclometalated complexes. Recent advances in nanotechnology have facilitated the development of multifunctional nanomaterials that can selectively deliver drugs to tumor cells, thereby overcoming the pharmacological limitations of metal-based drugs.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Environmental Science and Engineering, Shandong University, Qingdao 266701, China.
Metal-based nanoparticles (MNPs) are increasingly prevalent in the environment due to both natural processes and human activities, leading to direct interactions with plants through soil, water, and air exposure that can have beneficial and detrimental effects on plant growth and health. Understanding the uptake, translocation, and transformation of MNPs in plants is crucial for assessing environmental risks and leveraging nanotechnology in agriculture. However, accurate analysis of MNPs in plant tissues poses significant challenges due to complex plant matrices and the dynamic nature of nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!