Abelson tyrosine kinase (Abl) is regulated by the arrangement of its regulatory core, consisting sequentially of the SH3, SH2, and kinase (KD) domains, where an assembled or disassembled core corresponds to low or high kinase activity, respectively. It was recently established that binding of type II ATP site inhibitors, such as imatinib, generates a force from the KD N-lobe onto the SH3 domain and in consequence disassembles the core. Here, we demonstrate that the C-terminal αI-helix exerts an additional force toward the SH2 domain, which correlates both with kinase activity and type II inhibitor-induced disassembly. The αI-helix mutation E528K, which is responsible for the ABL1 malformation syndrome, strongly activates Abl by breaking a salt bridge with the KD C-lobe and thereby increasing the force onto the SH2 domain. In contrast, the allosteric inhibitor asciminib strongly reduces Abl's activity by fixating the αI-helix and reducing the force onto the SH2 domain. These observations are explained by a simple mechanical model of Abl activation involving forces from the KD N-lobe and the αI-helix onto the KD/SH2SH3 interface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11001296PMC
http://dx.doi.org/10.7554/eLife.92324DOI Listing

Publication Analysis

Top Keywords

force sh2
12
sh2 domain
12
kinase activity
8
kinase
5
αi-helix
5
molecular basis
4
basis abelson
4
abelson kinase
4
kinase regulation
4
regulation αi-helix
4

Similar Publications

Here, we report the results of an IR spectroscopy study on heteroclusters of HS and HO and several of their isotopomers using mass-selective IR spectroscopy in superfluid helium nanodroplets in the range of 2560-2800 cm. Based on DFT calculations on the B3LYP-D3/6-311++G(d,p) level of theory, we were able to assign the experimentally observed O-D stretching bands to heterodimer and heterotrimer clusters. Since no bands of the S-H-bound conformer HSH···OH could be observed, we were able to determine the O-H-bound conformer HOH···SH to be the global minimum structure.

View Article and Find Full Text PDF

Palladium-anchored calix[4]arene-derived porous organic polymer towards efficient hydrolytic cleavage of carbon disulfide.

J Hazard Mater

August 2024

Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, PR China. Electronic address:

The release of carbon disulfide can have adverse effects on our environment and human health. The stability of carbon disulfide and the slow kinetics of hydrolysis can make it challenging to achieve efficient and practical cleavage of the CS bonds. Herein, a calix[4]arene-based porous organic polymer (CPOP-1) is innovatively synthesized through an optimized polycondensation reaction using C-Methylcalix[4]resorcinarene and hexafluoro-hexaazatriphenylene as monomers.

View Article and Find Full Text PDF

Abelson tyrosine kinase (Abl) is regulated by the arrangement of its regulatory core, consisting sequentially of the SH3, SH2, and kinase (KD) domains, where an assembled or disassembled core corresponds to low or high kinase activity, respectively. It was recently established that binding of type II ATP site inhibitors, such as imatinib, generates a force from the KD N-lobe onto the SH3 domain and in consequence disassembles the core. Here, we demonstrate that the C-terminal αI-helix exerts an additional force toward the SH2 domain, which correlates both with kinase activity and type II inhibitor-induced disassembly.

View Article and Find Full Text PDF

Many biological functions are mediated by protein-protein interactions (PPIs), often involving specific structural modules, such as SH2 domains. Inhibition of PPIs is a pharmaceutical strategy of growing importance. However, a major challenge in the design of PPI inhibitors is the large interface involved in these interactions, which, in many cases, makes inhibition by small organic molecules ineffective.

View Article and Find Full Text PDF

Zeta chain-associated protein kinase 70 (ZAP-70) is a non-receptor tyrosine kinase that interacts with the activated T-cell receptor to transduce downstream signals, and thus plays an important role in the adaptive immune system. The biphosphorylated immunotyrosine-based activation motifs (ITAM-Y2P) binds to the N-SH2 and C-SH2 domains of ZAP-70 to promote the activation of ZAP-70. The present study explores molecular mechanisms of allosteric inactivation of ZAP-70 induced by the hot spot W165C mutation through atomically detailed molecular dynamics simulation approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!