Viruses pose a great threat to human production and life, thus the research and development of antiviral drugs is urgently needed. Antiviral peptides play an important role in drug design and development. Compared with the time-consuming and laborious wet chemical experiment methods, it is critical to use computational methods to predict antiviral peptides accurately and rapidly. However, due to limited data, accurate prediction of antiviral peptides is still challenging and extracting effective feature representations from sequences is crucial for creating accurate models. This study introduces a novel two-step approach, named HybAVPnet, to predict antiviral peptides with a hybrid network architecture based on neural networks and traditional machine learning methods. We adopted a stacking-like structure to capture both the long-term dependencies and local evolution information to achieve a comprehensive and diverse prediction using the predicted labels and probabilities. Using an ensemble technique with the different kinds of features can reduce the variance without increasing the bias. The experimental result shows HybAVPnet can achieve better and more robust performance compared with the state-of-the-art methods, which makes it useful for the research and development of antiviral drugs. Meanwhile, it can also be extended to other peptide recognition problems because of its generalization ability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCBB.2024.3385635 | DOI Listing |
Adv Sci (Weinh)
January 2025
National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
To bolster the capacity for managing potential infectious diseases in the future, it is critical to develop specific antiviral drugs that can be rapidly designed and delivered precisely. Herein, a CRISPR/Cas13d system for broad-spectrum targeting of influenza A virus (IAV) from human, avian, and swine sources is designed, incorporating Cas13d mRNA and a tandem CRISPR RNA (crRNA) specific for the highly conserved regions of viral polymerase acidic (PA), nucleoprotein (NP), and matrix (M) gene segments, respectively. Given that the virus targets cells with specific receptors but is not limited to a single organ, a Susceptible Cell Selective Delivery (SCSD) system is developed by modifying a lipid nanoparticle with a peptide mimicking the function of the hemagglutinin of influenza virus to target sialic acid receptors.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Jumei Doctor Group Medical (Shenzhen) Co., Ltd, Shenzhen, China.
Rationale: Current research on antiviral treatment in children is relatively limited, especially in children under 1 year old.
Patient Concerns: Liu XX, an 8-month-old infant (case number: 3001120473), presented to the hospital in August 2016 with a chief complaint of being "hepatitis B surface antigen positive for 8 months and experiencing abnormal liver function for 5 months."
Diagnoses: The patient was diagnosed as chronic hepatitis B cirrhosis (G3S3-4) with active compensatory phase.
Scand J Immunol
January 2025
Department of Ophthalmology, Shanghai Jiangong Hospital, Shanghai, China.
Dry eye disease (DED) is an inflammatory disorder in which CD4 T cells play a significant role in its pathogenesis. A CD4 T cell subset termed granulocyte-macrophage colony-stimulating factor-producing T helper (ThGM) cells would contribute to DED pathogenesis. However, the mechanisms by which the activity of ThGM cells is modulated are not thoroughly understood.
View Article and Find Full Text PDFBMC Cancer
January 2025
Centre for Medical Education, Queen's University Belfast, Belfast City Hospital, Lisburn Road, Belfast, UK.
Background: Myelofibrosis (MF) is a clonal haematopoietic disease, with median overall survival for patients with primary MF only 6.5 years. The most frequent gene mutation found in patients is JAK2, causing constitutive activation of the kinase and activation of downstream signalling.
View Article and Find Full Text PDFToxicon
January 2025
Department of Biology, School of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran. Electronic address:
SARS-CoV-2 is from the enveloped virus family responsible for the COVID-19 pandemic. No efficient drugs are currently available to treat infection explicitly caused by this virus. Therefore, searching for effective treatments for severe illness caused by SARS-CoV-2 is crucial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!