Regenerative medicine based on cell therapy has emerged as a promising approach for the treatment of various medical conditions. However, the success of cell therapy heavily relies on the development of suitable injectable hydrogels that can encapsulate cells and provide a conducive environment for their survival, proliferation, and tissue regeneration. Herein, we address the medical need for cyto- and biocompatible injectable hydrogels by reporting on the synthesis of a hydrogel-forming thermosensitive copolymer. The copolymer was synthesized by grafting poly(-isopropylacrylamide--carboxymethyl acrylate) (PNIPAM-COOH) onto chitosan through amide coupling. This chemical modification resulted in the formation of hydrogels that exhibit a sol-gel transition with an onset at approximately 27 °C, making them ideal for use in injectable applications. The hydrogels supported the survival and proliferation of cells for several days, which is critical for cell encapsulation. Furthermore, the study evaluates the addition of collagen/chitosan hybrid microspheres to support the adhesion of mesenchymal stem cells within the hydrogels. Altogether, these results demonstrate the potential of the PNIPAM-chitosan thermogel for cell encapsulation and its possible applications in regenerative medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.4c00071DOI Listing

Publication Analysis

Top Keywords

regenerative medicine
8
cell therapy
8
injectable hydrogels
8
survival proliferation
8
cell encapsulation
8
hydrogels
5
chitosan-pnipam thermogel
4
thermogel associated
4
associated hydrogel
4
hydrogel microspheres
4

Similar Publications

Cellular and gene therapy (CGT) products have emerged as a popular approach in regenerative medicine, showing promise in treating various pancreatic and liver diseases in numerous clinical trials. Before these therapies can be tested in human clinical trials, it is essential to evaluate their safety and efficacy in relevant animal models. Such preclinical testing is often required to obtain regulatory approval for investigational new drugs.

View Article and Find Full Text PDF

Liver organoids have been increasingly adopted as a critical in vitro model to study liver development and diseases. However, the pre-vascularization of liver organoids without affecting liver parenchymal specification remains a long-lasting challenge, which is essential for their application in regenerative medicine. Here, the large-scale formation of pre-vascularized human hepatobiliary organoids (vhHBOs) is presented without affecting liver epithelial specification via a novel strategy, namely nonparenchymal cell grafting (NCG).

View Article and Find Full Text PDF

Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.

View Article and Find Full Text PDF

ITK-SYK and TEL-SYK (also known as ETV6-SYK) are human tumor-causing chimeric proteins containing the kinase region of SYK, and the membrane-targeting, N-terminal, PH-TH domain-doublet of ITK or the dimerizing SAM-PNT domain of TEL, respectively. ITK-SYK causes peripheral T cell lymphoma, while TEL-SYK was reported in myelodysplastic syndrome. BTK is a kinase highly related to ITK and to further delineate the role of the N-terminus, we generated the corresponding fusion-kinase BTK-SYK.

View Article and Find Full Text PDF

Amniotic Fluid as a Potential Treatment for Vocal Fold Scar in a Rabbit Model.

J Voice

January 2025

Department of Otolaryngology - Head and Neck Surgery, University of Utah, Salt Lake City, UT; Department of Surgery, University Utah, Salt Lake City, UT.

Objectives/hypothesis: Vocal fold (VF) injury and chronic inflammation can progress to scarring, which is notoriously difficult to treat. Human amniotic fluid (AF) has potential for VF wound healing in a rabbit model, and we hypothesized that AF would demonstrate wound healing properties superior to hyaluronic acid (HA) over time.

Study Design: Randomized, controlled trial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!