Whether S-nitrosylation is the result of an unselective chemical process or enzymatically driven has been debated for years. A recent study by Zhou et al. identifies and characterizes the first S-nitroso-CoA (SNO-CoA)-assisted nitrosylase (SCAN) that catalyzes protein S-nitrosylation in mammals, including insulin receptor (INSR)/insulin receptor substrate 1 (IRS1), with implications for human metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tem.2024.02.010 | DOI Listing |
Trends Endocrinol Metab
February 2024
Redox Biology, Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark; Department of Biology, Tor Vergata University, Via della Ricerca Scientifica, 00133, Rome, Italy. Electronic address:
Whether S-nitrosylation is the result of an unselective chemical process or enzymatically driven has been debated for years. A recent study by Zhou et al. identifies and characterizes the first S-nitroso-CoA (SNO-CoA)-assisted nitrosylase (SCAN) that catalyzes protein S-nitrosylation in mammals, including insulin receptor (INSR)/insulin receptor substrate 1 (IRS1), with implications for human metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!