A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optical imaging of the intrinsic signal as a tool to characterize orientation sensitivity in the primary visual cortex of the young mouse. | LitMetric

Optical imaging of the intrinsic signal as a tool to characterize orientation sensitivity in the primary visual cortex of the young mouse.

Acta Neurobiol Exp (Wars)

Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland; Department of Epistemology, Faculty of Philosophy, University of Warsaw, Warsaw, Poland.

Published: March 2024

We employed intrinsic signal optical imaging (ISOI) to investigate orientation sensitivity bias in the visual cortex of young mice. Optical signals were recorded in response to the moving light gratings stimulating ipsi‑, contra‑ and binocular eye inputs. ISOI allowed visualization of cortical areas activated by gratings of specific orientation and temporal changes of light scatter during visual stimulation. These results confirmed ISOI as a reliable technique for imaging the activity of large populations of neurons in the mouse visual cortex. Our results revealed that the contralateral ocular input activated a larger area of the primary visual cortex than the ipsilateral input, and caused the highest response amplitudes of light scatter signals to all ocular inputs. Horizontal gratings moved in vertical orientation induced the most significant changes in light scatter when presented contralaterally and binocularly, surpassing stimulations by vertical or oblique gratings. These observations suggest dedicated integration mechanisms for the combined inputs from both eyes. We also explored the relationship between point luminance change (PLC) of grating stimuli and ISOI time courses under various orientations of movements of the gratings and ocular inputs, finding higher cross-correlation values for cardinal orientations and ipsilateral inputs. These findings suggested specific activation of different neuronal assemblies within the mouse's primary visual cortex by grating stimuli of the corresponding orientation. However, further investigations are needed to examine this summation hypothesis. Our study highlights the potential of optical imaging as a valuable tool for exploring functional‑anatomical relationships in the mouse visual system.

Download full-text PDF

Source
http://dx.doi.org/10.55782/ane-2024-2397DOI Listing

Publication Analysis

Top Keywords

visual cortex
20
optical imaging
12
primary visual
12
light scatter
12
intrinsic signal
8
orientation sensitivity
8
cortex young
8
changes light
8
mouse visual
8
ocular inputs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!