Dynamic interaction between BRCA2 and telomeric G-quadruplexes (G4) is crucial for maintaining telomere replication homeostasis. Cells lacking BRCA2 display telomeric damage with a subset of these cells bypassing senescence to initiate break-induced replication (BIR) for telomere synthesis. Here we show that the abnormal stabilization of telomeric G4 following BRCA2 depletion leads to telomeric repeat-containing RNA (TERRA)-R-loop accumulation, triggering liquid-liquid phase separation (LLPS) and the assembly of Alternative Lengthening of Telomeres (ALT)-associated promyelocytic leukemia (PML) bodies (APBs). Disruption of R-loops abolishes LLPS and impairs telomere synthesis. Artificial engineering of telomeric LLPS restores telomere synthesis, underscoring the critical role of LLPS in ALT. TERRA-R-loops also recruit Polycomb Repressive Complex 2 (PRC2), leading to tri-methylation of Lys27 on histone H3 (H3K27me3) at telomeres. Half of paraffin-embedded tissue sections from human breast cancers exhibit APBs and telomere length heterogeneity, suggesting that BRCA2 mutations can predispose individuals to ALT-type tumorigenesis. Overall, BRCA2 abrogation disrupts the dynamicity of telomeric G4, producing TERRA-R-loops, finally leading to the assembly of telomeric liquid condensates crucial for ALT. We propose that modulating the dynamicity of telomeric G4 and targeting TERRA-R-loops in telomeric LLPS maintenance may represent effective therapeutic strategies for treating ALT-like cancers with APBs, including those with BRCA2 disruptions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162766 | PMC |
http://dx.doi.org/10.1093/nar/gkae251 | DOI Listing |
Alzheimers Dement
December 2024
University of São Paulo Universidade de São Paulo, São Paulo, Brazil.
Background: The Down Syndrome (DS), also referred to as trisomy of chromosome 21, is a prevalent cause of intellectual disability and also contributes to the acceleration of aging, among other developmental and health concerns. Certain pathological characteristics shared by DS and Alzheimer's Disease (AD) indicate similar commonalities. This study aims to unravel the relationship between the canonical Wnt/pathway, the amyloid precursor protein processing, the telomere shortening in DS individuals.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.
Background: Leukocyte telomere length (LTL) serves as a proxy for tissue-specific TL and peripheral immune aging. Its association with aging-related brain endophenotypes, cognitive functioning, and Alzheimer's disease (AD) risk is established, but the underlying molecular mechanisms remain elusive. Investigating LTL's association with AD biomarkers is crucial for identifying its role in brain resilience and disease progression.
View Article and Find Full Text PDFMed Oncol
January 2025
Department of Medical Surgical Nursing, College of Nursing, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia.
CRC has the third-highest cancer incidence and death. Many human cancers, including colorectal cancer, are connected to abnormal signaling pathway gene expression. Many human malignancies include Hippo and Rap1 signaling.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
To achieve replicative immortality, cancer cells must activate telomere maintenance mechanisms. In 10 to 15% of cancers, this is enabled by recombination-based alternative lengthening of telomeres pathways (ALT). ALT cells display several hallmarks including heterogeneous telomere length, extrachromosomal telomeric repeats, and ALT-associated PML bodies.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
Cancer is a leading cause of death, so continuous efforts into cancer therapy are imperative. In tumor cells, telomerase and oncogene activity are key points for uncontrolled cell growth. Targeting these processes with ligands that inhibit telomerase and/or reduce oncogene expression has been identified as a promising cancer therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!