RNA editing is a crucial modification in plants' organellar transcripts that converts cytidine to uridine (C-to-U; and sometimes uridine to cytidine) in RNA molecules. This post-transcriptional process is controlled by the PLS-class protein with a DYW domain, which belongs to the pentatricopeptide repeat (PPR) protein family. RNA editing is widespread in land plants; however, complex thalloid liverworts (Marchantiopsida) are the only group reported to lack both RNA editing and DYW-PPR protein. The liverwort Cyathodium cavernarum (Marchantiopsida, Cyathodiaceae), typically found in cave habitats, was newly found to have 129 C-to-U RNA editing sites in its chloroplast and 172 sites in its mitochondria. The Cyathodium genus, specifically C. cavernarum, has a large number of PPR editing factor genes, including 251 DYW-type PPR proteins. These DYW-type PPR proteins may be responsible for C-to-U RNA editing in C. cavernarum. Cyathodium cavernarum possesses both PPR DYW proteins and RNA editing. Our analysis suggests that the remarkable RNA editing capability of C. cavernarum may have been acquired alongside the emergence of DYW-type PPR editing factors. These findings provide insight into the evolutionary pattern of RNA editing in land plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.19750 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Biochemistry, University of Utah, Salt Lake City, UT 84112.
Cell Mol Life Sci
January 2025
Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
Dynamic changes in DNA methylation are prevalent during the progression of breast cancer. However, critical alterations in aberrant methylation and gene expression patterns have not been thoroughly characterized. Here, we utilized guide positioning sequencing (GPS) to conduct whole-genome DNA methylation analysis in a unique human breast cancer progression model: MCF10 series of cell lines (representing benign/normal, atypical hyperplasia, and metastatic carcinoma).
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
Biospring Gesellschaft für Biotechnologie, Alt-Fechenheim 34, Frankfurt am Main, 60386, Germany.
The use of single-guide RNA (sgRNA) for gene editing using the CRISPR Cas9 system has become a powerful technique in various fields, especially with the growing interest in such molecules as therapeutic options in the last years. An important parameter for the use of these molecules is the verification of the correct sgRNA oligonucleotide sequence. Apart from next-generation sequencing protocols, mass spectrometry (MS) has been proven as a powerful technique for this purpose.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemical & Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
The CRISPR-Cas9 system has frequently been used for genome editing in Streptomyces; however, cytotoxicity, caused by off-target cleavage, limits its application. In this study, we implement innovative modification to Cas9, strategically addressing challenges encountered during gene manipulation using Cas9 within strains possessing high GC content genome. The Cas9-BD, a modified Cas9 with the addition of polyaspartate to its N- and C-termini, is developed with decreased off-target binding and cytotoxicity compared with wild-type Cas9.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
January 2025
Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.
Tumor-specific antigens, also known as neoantigens, have potential utility in anti-cancer immunotherapy, including immune checkpoint blockade (ICB), neoantigen-specific T cell receptor-engineered T (TCR-T), chimeric antigen receptor T (CAR-T), and therapeutic cancer vaccines (TCVs). After recognizing presented neoantigens, the immune system becomes activated and triggers the death of tumor cells. Neoantigens may be derived from multiple origins, including somatic mutations (single nucleotide variants, insertion/deletions, and gene fusions), circular RNAs, alternative splicing, RNA editing, and polymorphic microbiome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!