Metal-organic frameworks (MOFs) have emerged as promising platforms for photocatalytic hydrogen evolution reaction (HER) due to their fascinating physiochemical properties. Rationally engineering the compositions and structures of MOFs can provide abundant opportunities for their optimization. In recent years, high-entropy materials (HEMs) have demonstrated great potential in the energy and environment fields. However, there is still no report on the development of high-entropy MOFs (HE-MOFs) for photocatalytic HER in aqueous solution. Herein, the authors report the synthesis of a novel p-type HE-MOFs single crystal (HE-MOF-SC) and the corresponding HE-MOFs nanosheets (HE-MOF-NS) capable of realizing visible-light-driven photocatalytic HER. Both HE-MOF-SC and HE-MOF-NS exhibit higher photocatalytic HER activity than all the single-metal MOFs, which are supposed to be ascribed to the interplay between the different metal nodes in the HE-MOFs that enables more efficient charge transfer. Moreover, impressively, the HE-MOF-NS demonstrates much higher photocatalytic activity than the HE-MOF-SC due to its thin thickness and enhanced surface area. At optimum conditions, the rate of H evolution on the HE-MOF-NS is ≈13.24 mmol h g, which is among the highest values reported for water-stable MOF photocatalysts. This work highlights the importance of developing advanced high-entropy materials toward enhanced photocatalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202403328DOI Listing

Publication Analysis

Top Keywords

photocatalytic hydrogen
8
high-entropy materials
8
higher photocatalytic
8
photocatalytic activity
8
photocatalytic
6
water-stable high-entropy
4
high-entropy metal-organic
4
metal-organic framework
4
framework nanosheets
4
nanosheets photocatalytic
4

Similar Publications

Expanding the spectral response of photocatalysts to facilitate overall water splitting (OWS) represents an effective approach for improving solar spectrum utilization efficiency. However, the majority of single-phase photocatalysts designed for OWS primarily respond to the ultraviolet region, which accounts for a small proportion of sunlight. Herein, we present a versatile strategy to achieve broad visible-light-responsive OWS photocatalysis dominated by direct ligand-to-cluster charge transfer (LCCT) within metal-organic frameworks (MOFs).

View Article and Find Full Text PDF

Synergistic design of dual S-scheme heterojunction CuO/NiAl-LDH@MIL-53(Fe) for boosting photocatalytic hydrogen evolution.

J Colloid Interface Sci

January 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 PR China.

The development of heterojunctions is a proven strategy to augment the photocatalytic efficiency of materials. However, the enhancement in charge transfer facilitated by a single heterojunction is inherently constrained. To overcome these limitations, we synthesized a dual S-scheme heterojunction ternary composite photocatalyst, CuO/NiAl-LDH@MIL-53(Fe), designed for efficient visible-light-driven hydrogen (H) production.

View Article and Find Full Text PDF

Graphitic carbon nitride (g-C3N4) has gained significant attention as a promising nonmetallic semiconductor photocatalyst due to its photochemical stability, favorable electronic properties, and efficient light absorption. Nevertheless, its practical applications are hindered by limitations such as low specific surface area, rapid recombination of photogenerated charge carriers, poor electrical conductivity, and restricted photo-response ranges. This review explores recent advancements in the synthesis, modification and application of g-C3N4 and its nanocomposites with a focus on addressing these challenges.

View Article and Find Full Text PDF

Rapid Charge Transfer Endowed by Heteroatom Doped Z-Scheme Van Der Waals Heterojunction for Boosting Photocatalytic Hydrogen Evolution.

Small

January 2025

College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, P. R. China.

Constructing heterojunctions between phase interfaces represents a crucial strategy for achieving excellent photocatalytic performance, but the absence of sufficient interface driving force and limited charge transfer pathway leads to unsatisfactory charge separation processes. Herein, a doping-engineering strategy is introduced to construct a In─N bond-bridged InS nanocluster modified S doped carbon nitride (CN) nanosheets Z-Scheme van der Waals (VDW) heterojunctions (InS/CNS) photocatalyst, and the preparation process just by one-step pyrolysis using the pre-coordination confinement method. Specifically, S atoms doping enhances the bond strength of In─N and forms high-quality interfacial In─N linkage which serves as the atomic-level interfacial "highway" for improving the interfacial electrons migration, decreasing the charge recombination probability.

View Article and Find Full Text PDF

Template-free synthesis of single-crystal SrTiO nanocages for photocatalytic overall water splitting.

Chem Commun (Camb)

January 2025

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

In this study, we present a novel approach to achieve the template-free fabrication of nanocage-shaped SrTiO (N-STO) single crystals molten salt flux treatment. Systematic characterizations demonstrate the high crystallinity and low defect density of N-STO. The N-STO single crystals enable overall water splitting (OWS) with hydrogen and oxygen evolution rates of 100.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!