This theoretical investigation delves into the structural, electronic, and electrochemical properties of two hexagonal iron-arsenide monolayers, 1T-FeAs and 1H-FeAs, focusing on their potential as anode materials for lithium-ion batteries. Previous studies have highlighted the ferromagnetic nature of 1T-FeAs at room temperature. Our calculations reveal that both phases exhibit metallic behaviour with spin-polarized electronic band structures. Electrochemical studies show that the 1T-FeAs monolayer has better ionic conductivity for Li ions than the 1H-FeAs phase, attributed to a lower activation barrier of 0.38 eV. This characteristic suggests a faster charge/discharge rate. Both FeAs phases exhibit comparable theoretical capacities (374 mA h g), outperforming commercial graphite anodes. The average open-circuit voltage for maximum Li atom adsorption is 0.61 V for 1H-FeAs and 0.44 V for 1T-FeAs. The volume expansion over the maximum adsorption of Li atoms on both phases is also remarkably less than the commercially used anode material such as graphite. Furthermore, the adsorption of Li atoms onto 1H-FeAs induces a remarkable transition from ferromagnetism to anti-ferromagnetism, with minimal impact on the electronic band structure. In contrast, the original state of 1T-FeAs remains unaffected by Li adsorption. To summarize, both 1T-FeAs and 1H-FeAs monolayers have potential as promising anode materials for lithium-ion batteries, offering valuable insights into their electrochemical performance and phase transition behaviour upon Li adsorption.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp00062eDOI Listing

Publication Analysis

Top Keywords

lithium-ion batteries
12
iron-arsenide monolayers
8
anode material
8
1t-feas 1h-feas
8
anode materials
8
materials lithium-ion
8
phases exhibit
8
electronic band
8
adsorption atoms
8
1t-feas
6

Similar Publications

AA-Stacked Hydrogen-Substituted Graphdiyne for Enhanced Lithium Storage.

Angew Chem Int Ed Engl

January 2025

Leibniz University Hanover: Leibniz Universitat Hannover, Institute for Solid State Physics, GERMANY.

Graphdiyne (GDY) has been considered a promising electrode material for application in electrochemical energy storage. However, studies on GDY featuring an ordered interlayer stacking are lacking, which is supposed to be another effective way to increase lithium binding sites and diffusion pathways. Herein, we synthesized a hydrogen-substituted GDY (HsGDY) with a highly-ordered AA-stacking structure via a facile alcohol-thermal method.

View Article and Find Full Text PDF

The advancement of rapid-response grid energy storage systems and the widespread adoption of electric vehicles are significantly hindered by the charging times and energy densities associated with current lithium-ion battery technology. In state-of-the-art lithium-ion batteries, graphite is employed as the standard negative electrode material. However, graphite suffers from polarization and deteriorating side-reactions at the high currents needed for fast charging.

View Article and Find Full Text PDF

Silicon (Si) is recognized as a promising anode material for lithium-ion batteries (LIBs). However, the significant volume expansion during lithiation poses a make-or-break challenge for the commercial adoption of silicon as an anode. The solutions to mitigate the challenge often depend on processes that can increase costs for the LIB.

View Article and Find Full Text PDF

Highly Conductive Boron-Containing Electrolytes by Integrating Modeling and Experiments.

ACS Omega

January 2025

Department of Chemistry, Department of Physics, and Center for Functional Nanoscale Materials, Clark Atlanta University, Atlanta, Georgia 30314, United States.

A highly conducting polymer electrolyte was developed, where the structure included molecular elements guided by computational modeling results. The electrolyte comprises acidic boron and basic oxygen atoms within the molecular structure. Because of the presence of the boron and oxygen atoms within the structure, it interacts with the anion and cation of the dissolved salt and functions as an ion separator by increasing the bond length between the anion and cation.

View Article and Find Full Text PDF

Doping LiFePO with Al: Suppression of Anti-Site Defects and Implications for Battery Recycling.

ACS Omega

January 2025

Department of Mechanical Engineering, Virginia Tech, Blacksburg, 635 Prices Fork Road, Blacksburg, Virginia 24061, United States.

In this study, a group of aluminum-doped lithium iron phosphate (LFP) with varying dopant concentrations (Li Al FePO/C, where = 0.01-0.03) was synthesized via a solid-state reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!