Background: Improving survival from pediatric cardiac arrest requires a well-functioning system of care with appropriately trained healthcare providers and designated cardiac arrest teams. This study aimed to describe the current organization and training for pediatric cardiac arrest in Denmark.
Methods: We performed a nationwide cross-sectional study. A questionnaire was distributed to all hospitals in Denmark with a pediatric department. The survey included questions about receiving patients with out-of-hospital cardiac arrest, protocols for extracorporeal life support, cardiac arrest team compositions, and training.
Results: We obtained responses from 17 of 19 hospitals with a pediatric department. In total, 76% of hospitals received patients with pediatric out-of-hospital cardiac arrest and 35% of hospitals had a protocol for extracorporeal life support. None of the hospitals had identical cardiac arrest team member compositions. The total number of team members ranged from 4-10, with a median of 8 members (IQR 7;9). In 84% of hospitals a specialized course in pediatric resuscitation was implemented and in 5% of hospitals, the specialized course was for the entire cardiac arrest team. Only few hospitals had training in laryngeal mask (6%) and intubation (29%) for pediatric cardiac arrest and none of them were trained in extracorporeal life support.
Conclusion: We found high variability in the composition of the pediatric cardiac arrest teams and training across the surveyed Danish hospitals. Many hospitals lack training in important pediatric resuscitation skills. Although many hospitals receive pediatric patients after out-of-hospital cardiac arrest, only few have protocols for transfer for extracorporeal life support.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10995645 | PMC |
http://dx.doi.org/10.1016/j.resplu.2024.100555 | DOI Listing |
Sci Rep
December 2024
Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA.
Hypertrophic cardiomyopathy (HCM) afflicts humans, cats, pigs, and rhesus macaques. Disease sequelae include congestive heart failure, thromboembolism, and sudden cardiac death (SCD). Sarcomeric mutations explain some human and cat cases, however, the molecular basis in rhesus macaques remains unknown.
View Article and Find Full Text PDFGene
December 2024
Department of Medical Genetics/Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou 510515, China; Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China. Electronic address:
Background/aim: Autosomal-recessive carnitine-acylcarnitine translocase deficiency (CACTD) is a rare disorder of long-chain fatty acid oxidation caused by variants in the SLC25A20 gene. Under fasting conditions, most newborns with severe CACTD experience sudden cardiac arrest and hypotonia, often leading to premature death due to rapid disease progression. Understanding of genetic factors and pathogenic mechanisms in CACTD is essential for its diagnosis, treatment, and prevention.
View Article and Find Full Text PDFJ Am Med Inform Assoc
December 2024
AI for Health Institute, Washington University in St Louis, St Louis, MO 63130, United States.
Objective: Early detection of surgical complications allows for timely therapy and proactive risk mitigation. Machine learning (ML) can be leveraged to identify and predict patient risks for postoperative complications. We developed and validated the effectiveness of predicting postoperative complications using a novel surgical Variational Autoencoder (surgVAE) that uncovers intrinsic patterns via cross-task and cross-cohort presentation learning.
View Article and Find Full Text PDFIntensive Care Med Exp
December 2024
Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway.
Background: Identifying spontaneous circulation during cardiopulmonary resuscitation (CPR) is challenging. Current methods, which involve intermittent and time-consuming pulse checks, necessitate pauses in chest compressions. This issue is problematic in both in-hospital cardiac arrest and out-of-hospital cardiac arrest situations, where resources for identifying circulation during CPR may be limited.
View Article and Find Full Text PDFSci Rep
December 2024
Resuscitation Science Center and Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
Pediatric neurological injury and disease is a critical public health issue due to increasing rates of survival from primary injuries (e.g., cardiac arrest, traumatic brain injury) and a lack of monitoring technologies and therapeutics for treatment of secondary neurological injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!