Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study analyses the factors driving CO emissions from electricity generation in Ghana from 1990 to 2020. Employing Logarithmic Mean Divisia Index (LMDI) and Autoregressive Distributed Lag (ARDL) techniques, the research decomposes electricity generation into different factors and assesses their impact on CO emissions, considering both short and long-run effects. The LMDI analysis reveals that the total CO emissions from electricity generation amount to 3.33%, with all factors contributing positively in each subperiod. Notably, fossil fuel intensity, production, and transformation factors exhibit substantial contributions of about 1.16%, 0.49%, and 0.48%, respectively. Contrastingly, the ARDL results highlight that only electricity intensity and production factors significantly increase CO emissions by about 0.20% and 0.09% (0.38% and 0.10%) in the short-run (long-run), while other factors contribute to a reduction in electricity generation emissions. Overall, we conclude that electricity intensity and production factors are the primary drivers of CO emissions from electricity generation in Ghana. Nevertheless, effective measures to address all decomposition factors is crucial for effective mitigation of electricity generation CO emissions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10998045 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e28212 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!