Objective: To assess the impact of memory therapy on enhancing recovery of postoperative cognitive function and alleviating mood disturbances in brain glioma patients.
Methods: This retrospective study included 160 brain glioma patients who met the inclusion criteria from August 2019 to July 2022. They were divided into a control group and an observation group according to according to different treatment method, with 80 cases in each group. The control group was given routine rehabilitation, while the observation group received additional memory therapy. The study compared complications between the two groups, focusing on the changes in cognitive function [using the Neurobehavioral Cognitive Status Check Scale (NCSE), Clinical Dementia Score (CDR)], mood disturbances [measured by the State Anxiety Scale (S-AI), Trait Anxiety Scale (T-AI), and Hospital Stress Scale score], health-promoting behaviors [evaluated with the Chinese Version of Health Promotion Lifestyle Scale-II (HPLP-II)], coping styles [assessed through the Medical Response Questionnaire (MCQM)], and cancer-related fatigue [using the Cancer-Related Fatigue Scale (CFS)] before and after intervention were observed. A total of 160 glioma cases were classified into either a good or poor prognosis category, based on their prognosis 12 months post-surgery. Baseline data from both groups were compared, and multivariate logistic regression was employed to analyze the factors influencing outcomes in glioma patients.
Results: After intervention, the observation group exhibited higher scores of NCSE, HPLP-II, and CFS, but lower scores on the CDR, S-AI, T-AI and hospital stress scale compared to the control group (all P<0.05). Additionally, within the MCQM, the observation group showed reduced avoidance and yield scores, and an increased facing score, compared to the control group (all P<0.05). No significant difference was observed between the complication rates of the control (8.75%) and observation groups (3.75%) (P>0.05). However, the incidence of adverse prognosis was significantly lower in the observation group compared to the control group (8.75% vs 22.50%) (P<0.05). There were no significant differences in age, maximum tumor diameter, preoperative Karnofsky Performance Status score, gender or lesion location between the poor prognosis group and the good prognosis group (all P>0.05). The poor prognosis group had a higher proportion of patients in clinical stages III-IV and a lower proportion receiving recall therapy compared to good prognosis group (P<0.05). Multivariate logistic regression analysis identified clinical stage (III-IV stage) [OR=3.562 (95% CI: 1.476-8.600)] as a risk factor for poor prognosis after brain glioma surgery (P<0.05), while undergoing memory therapy [β=0.330 (95% CI: 0.99-0.842)] acted as a protective factor against poor prognosis (P<0.05).
Conclusion: Memory therapy has been shown to promote postoperative cognitive function recovery in glioma patients, reduce anxiety and stress response, bolster coping mechanisms and health-promoting behavior, diminish cancer-related fatigue, and improve patient prognosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10994802 | PMC |
http://dx.doi.org/10.62347/UUTB6644 | DOI Listing |
Mol Neurodegener
January 2025
The Picower Institute for Learning and Memory, Cambridge, MA, USA.
Many diseases and disorders of the nervous system suffer from a lack of adequate therapeutics to halt or slow disease progression, and to this day, no cure exists for any of the fatal neurodegenerative diseases. In part this is due to the incredible diversity of cell types that comprise the brain, knowledge gaps in understanding basic mechanisms of disease, as well as a lack of reliable strategies for delivering new therapeutic modalities to affected areas. With the advent of single cell genomics, it is now possible to interrogate the molecular characteristics of diverse cell populations and their alterations in diseased states.
View Article and Find Full Text PDFNat Commun
January 2025
Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.
DOPA Decarboxylase (DDC) has been proposed as a cerebrospinal fluid (CSF) biomarker with increased concentrations in Lewy body disorders (LBDs) and highest levels in patients receiving dopaminergic treatment. Here we evaluate plasma DDC, measured by proximity extension assay, and the effect of dopaminergic treatment in three independent LBD (with a focus on dementia with Lewy bodies (DLB) and Parkinson's disease (PD)) cohorts: an autopsy-confirmed cohort (n = 71), a large multicenter, cross-dementia cohort (n = 1498) and a longitudinal cohort with detailed treatment information (n = 66, median follow-up time[IQR] = 4[4, 4] years). Plasma DDC was not altered between different LBDs and other disease groups or controls in absence of treatment.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India.
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by progressive memory loss and cognitive decline. The processes underlying the pathophysiology of AD are still not fully understood despite a great deal of research. Since mitochondrial dysfunction affects cellular energy metabolism, oxidative stress, and neuronal survival, it is becoming increasingly clear that it plays a major role in the development of AD.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
Background: Arginase-1 (Arg1) expressing tumor-associated macrophages (TAMs) may create an immune-suppressive tumor microenvironment (TME), which is a significant challenge for cancer immunotherapy. We previously reported the existence of Arg1-specific memory T cells among peripheral blood mononuclear cells (PBMCs) and described that Arg-1-based immune modulatory vaccines (IMVs) control tumor growth and alter the M1/M2 macrophage ratio in murine models of cancer. In the present study, we investigated how Arg1-specific T cells can directly target TAMs and influence their polarization.
View Article and Find Full Text PDFNeuroscience
January 2025
Kansai University of Health Sciences, Faculty of Health Sciences, Department of Physical Therapy, 2-11-1 Wakaba Sennangun Kumatori, Osaka 590-0482, Japan; Graduate School of Kansai University of Health Sciences, Graduate School of Health Sciences, 2-11-1 Wakaba Sennangun Kumatori, Osaka 590-0482, Japan.
Elderly adults may have poorer recall ability than young adults and may not fully enjoy the effects of motor imagery. To understand the age bias of the effect of motor imagery on hand dexterity, we evaluated brain activation and spinal motor nerve excitability. Brain activation was evaluated from changes in oxygenated hemoglobin concentration, while spinal motor nerve excitability was evaluated from F-waves in eight young (mean age 21.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!