Cochlear outer hair cells (OHCs) are electromotile and are implicated in mechanisms of amplification of responses to sound that enhance sound sensitivity and frequency tuning. They send information to the brain through glutamatergic synapses onto a small subpopulation of neurons of the ascending auditory nerve, the type II spiral ganglion neurons (SGNs). The OHC synapses onto type II SGNs are sparse and weak, suggesting that type II SGNs respond primarily to loud and possibly damaging levels of sound. OHCs also receive innervation from the brain through the medial olivocochlear (MOC) efferent neurons. MOC neurons are cholinergic yet exert an inhibitory effect on auditory function as they are coupled to alpha9/alpha10 nicotinic acetylcholine receptors (nAChRs) on OHCs, which leads to calcium influx that gates SK potassium channels. The net hyperpolarization exerted by this efferent synapse reduces OHC activity-evoked electromotility and is implicated in cochlear gain control, protection against acoustic trauma, and attention. MOC neurons also label for markers of gamma-aminobutyric acid (GABA) and GABA synthesis. GABA autoreceptor (GABAR) activation by GABA released from MOC terminals has been demonstrated to reduce ACh release, confirming important negative feedback roles for GABA. However, the full complement of GABAergic activity in the cochlea is not currently understood, including the mechanisms that regulate GABA release from MOC axon terminals, whether GABA diffuses from MOC axon terminals to other postsynaptic cells, and the location and function of GABA receptors (GABARs). Previous electron microscopy studies suggest that MOC neurons form contacts onto several other cell types in the cochlea, but whether these contacts form functional synapses, and what neurotransmitters are employed, are unknown. Here we use immunohistochemistry, optical neurotransmitter imaging and patch-clamp electrophysiology from hair cells, afferent dendrites, and efferent axons to demonstrate that in addition to presynaptic GABAR autoreceptor activation, MOC efferent axon terminals release GABA onto type II SGN afferent dendrites with postsynaptic activity mediated by GABARs. This synapse may have multiple roles including developmental regulation of cochlear innervation, fine tuning of OHC activity, or providing feedback to the brain about MOC and OHC activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10996694PMC
http://dx.doi.org/10.1101/2024.03.28.587185DOI Listing

Publication Analysis

Top Keywords

moc neurons
12
axon terminals
12
moc
9
gaba
9
neurons
8
efferent neurons
8
type spiral
8
spiral ganglion
8
hair cells
8
type sgns
8

Similar Publications

Noise-induced hearing loss (NIHL) poses an emerging global health problem with only ear protection or sound avoidance as preventive strategies. In addition, however, the cochlea receives some protection from medial olivocochlear (MOC) efferent neurons, providing a potential target for therapeutic enhancement. Cholinergic efferents release ACh (Acetylycholine) to hyperpolarize and shunt the outer hair cells (OHCs), reducing sound-evoked activation.

View Article and Find Full Text PDF

Previous physiological and psychophysical studies have explored whether feedback to the cochlea from the efferent system influences forward masking. The present work proposes that the limited growth-of-masking (GOM) observed in auditory nerve (AN) fibers may have been misunderstood; namely, that this limitation may be due to the influence of anesthesia on the efferent system. Building on the premise that the unanesthetized AN may exhibit GOM similar to more central nuclei, the present computational modeling study demonstrates that feedback from the medial olivocochlear (MOC) efferents may contribute to GOM observed physiologically in onset-type neurons in both the cochlear nucleus and inferior colliculus (IC).

View Article and Find Full Text PDF

Co-release of GABA and ACh from medial olivocochlear neurons fine tunes cochlear efferent inhibition.

bioRxiv

August 2024

Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor N. Torres", Consejo Nacional de Investigaciones Científicas y Técnicas, (1428) Ciudad Autónoma de Buenos Aires, Argentina.

During development, inner hair cells (IHCs) in the mammalian cochlea are unresponsive to acoustic stimuli but instead exhibit spontaneous activity. During this same period, neurons originating from the medial olivocochlear complex (MOC) transiently innervate IHCs, regulating their firing pattern which is crucial for the correct development of the auditory pathway. Although the MOC-IHC is a cholinergic synapse, previous evidence indicates the widespread presence of gamma-aminobutyric acid (GABA) signaling markers, including presynaptic GABA receptors (GABAR).

View Article and Find Full Text PDF

Introduction: Hearing decline stands as the most prevalent single sensory deficit associated with the aging process. Giving compelling evidence suggesting a protective effect associated with the efferent auditory system, the goal of our study was to characterize the age-related changes in the number of efferent medial olivocochlear (MOC) synapses regulating outer hair cell (OHC) activity compared with the number of afferent inner hair cell ribbon synapses in CBA/J mice over their lifespan.

Methods: Organs of Corti of 3-month-old CBA/J mice were compared with mice aged between 10 and 20 months, grouped at 2-month intervals.

View Article and Find Full Text PDF

The encoding of acoustic stimuli requires precise neuron timing. Auditory neurons in the cochlear nucleus (CN) and brainstem are well suited for accurate analysis of fast acoustic signals, given their physiological specializations of fast membrane time constants, fast axonal conduction, and reliable synaptic transmission. The medial olivocochlear (MOC) neurons that provide efferent inhibition of the cochlea reside in the ventral brainstem and participate in these fast neural circuits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!