Background: Primary luminal breast cancer cells lose their identity rapidly in standard tissue culture, which is problematic for testing hormone interventions and molecular pathways specific to the luminal subtype. Breast cancer organoids are thought to retain tumor characteristics better, but long-term viability of luminal-subtype cases is a persistent challenge. Our goal was to adapt short-term organoids of luminal breast cancer for parallel testing of genetic and pharmacologic perturbations.

Methods: We freshly isolated patient-derived cells from luminal tumor scrapes, miniaturized the organoid format into 5 μl replicates for increased throughput, and set an endpoint of 14 days to minimize drift. Therapeutic hormone targeting was mimicked in these "zero-passage" organoids by withdrawing β-estradiol and adding 4-hydroxytamoxifen. We also examined sulforaphane as an electrophilic stress and commercial neutraceutical with reported anti-cancer properties. Downstream mechanisms were tested genetically by lentiviral transduction of two complementary sgRNAs and Cas9 stabilization for the first week of organoid culture. Transcriptional changes were measured by RT-qPCR or RNA sequencing, and organoid phenotypes were quantified by serial brightfield imaging, digital image segmentation, and regression modeling of cellular doubling times.

Results: We achieved >50% success in initiating luminal breast cancer organoids from tumor scrapes and maintaining them to the 14-day zero-passage endpoint. Success was mostly independent of clinical parameters, supporting general applicability of the approach. Abundance of and in zero-passage organoids consistently remained within the range of patient variability at the endpoint. However, responsiveness to hormone withdrawal and blockade was highly variable among luminal breast cancer cases tested. Combining sulforaphane with knockout of (a phase II antioxidant response gene and downstream effector of sulforaphane) also yielded a breadth of organoid growth phenotypes, including growth inhibition with sulforaphane, growth promotion with knockout, and growth antagonism when combined.

Conclusions: Zero-passage organoids are a rapid and scalable way to interrogate properties of luminal breast cancer cells from patient-derived material. This includes testing drug mechanisms of action in different clinical cohorts. A future goal is to relate inter-patient variability of zero-passage organoids to long-term outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10996455PMC
http://dx.doi.org/10.1101/2024.03.24.586432DOI Listing

Publication Analysis

Top Keywords

breast cancer
28
luminal breast
24
zero-passage organoids
16
organoids
8
luminal
8
organoids luminal
8
cancer cells
8
cancer organoids
8
tumor scrapes
8
breast
7

Similar Publications

GradeDiff-IM: An Ensembles Model-based Grade Classification of Breast Cancer.

Biomed Phys Eng Express

January 2025

School of Engineering and Computing, University of the West of Scotland, University of the West of Scotland - Paisley Campus, Paisley PA1 2BE, UK, City, Paisley, PA1 2BE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The partitioner learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification.

View Article and Find Full Text PDF

Background: Bangladesh and West Bengal, India, are 2 densely populated South Asian neighboring regions with many socioeconomic and cultural similarities. In dealing with breast cancer (BC)-related issues, statistics show that people from these regions are having similar problems and fates. According to the Global Cancer Statistics 2020 and 2012 reports, for BC (particularly female BC), the age-standardized incidence rate is approximately 22 to 25 per 100,000 people, and the age-standardized mortality rate is approximately 11 to 13 per 100,000 for these areas.

View Article and Find Full Text PDF

Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.

View Article and Find Full Text PDF

Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.

View Article and Find Full Text PDF

This study presents a novel approach to modeling breast cancer dynamics, one of the most significant health threats to women worldwide. Utilizing a piecewise mathematical framework, we incorporate both deterministic and stochastic elements of cancer progression. The model is divided into three distinct phases: (1) initial growth, characterized by a constant-order Caputo proportional operator (CPC), (2) intermediate growth, modeled by a variable-order CPC, and (3) advanced stages, capturing stochastic fluctuations in cancer cell populations using a stochastic operator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!