A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

SPACe (Swift Phenotypic Analysis of Cells): an open-source, single cell analysis of Cell Painting data. | LitMetric

AI Article Synopsis

  • High throughput microscopy and the Cell Painting assay enable large-scale screening of cellular responses, generating extensive image data vital for research in cell biology.* -
  • SPACe is a new, open-source Python platform designed to analyze single-cell image data from Cell Painting experiments, offering significantly faster processing times and maintaining accuracy in mechanism of action recognition.* -
  • SPACe improves upon existing software by providing better reproducibility, applicability to multiple cell lines, sensitivity to individual cell variations, and enhanced interpretability of morphological features in experimental data.*

Article Abstract

Phenotypic profiling by high throughput microscopy has become one of the leading tools for screening large sets of perturbations in cellular models. Of the numerous methods used over the years, the flexible and economical Cell Painting (CP) assay has been central in the field, allowing for large screening campaigns leading to a vast number of data-rich images. Currently, to analyze data of this scale, available open-source software ( , CellProfiler) requires computational resources that are not available to most laboratories worldwide. In addition, the image-embedded cell-to-cell variation of responses within a population, while collected and analyzed, is usually averaged and unused. Here we introduce SPACe ( S wift P henotypic A nalysis of Ce lls), an open source, Python-based platform for the analysis of single cell image-based morphological profiles produced by CP experiments. SPACe can process a typical dataset approximately ten times faster than CellProfiler on common desktop computers without loss in mechanism of action (MOA) recognition accuracy. It also computes directional distribution-based distances (Earth Mover's Distance - EMD) of morphological features for quality control and hit calling. We highlight several advantages of SPACe analysis on CP assays, including reproducibility across multiple biological replicates, easy applicability to multiple (∼20) cell lines, sensitivity to variable cell-to-cell responses, and biological interpretability to explain image-based features. We ultimately illustrate the advantages of SPACe in a screening campaign of cell metabolism small molecule inhibitors which we performed in seven cell lines to highlight the importance of testing perturbations across models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10996526PMC
http://dx.doi.org/10.1101/2024.03.21.586132DOI Listing

Publication Analysis

Top Keywords

single cell
8
cell painting
8
advantages space
8
cell lines
8
cell
7
space
5
space swift
4
swift phenotypic
4
analysis
4
phenotypic analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!