Background: Large-scale family pedigrees are commonly used across medical, evolutionary, and forensic genetics. These pedigrees are tools for identifying genetic disorders, tracking evolutionary patterns, and establishing familial relationships via forensic genetic identification. However, there is a lack of software to accurately simulate different pedigree structures along with genomes corresponding to those individuals in a family pedigree. This limits simulation-based evaluations of methods that use pedigrees.

Results: We have developed a python command-line-based tool called py_ped_sim that facilitates the simulation of pedigree structures and the genomes of individuals in a pedigree. py_ped_sim represents pedigrees as directed acyclic graphs, enabling conversion between standard pedigree formats and integration with the forward population genetic simulator, SLiM. Notably, py_ped_sim allows the simulation of varying numbers of offspring for a set of parents, with the capacity to shift the distribution of sibship sizes over generations. We additionally add simulations for events of misattributed paternity, which offers a way to simulate half-sibling relationships. We validated the accuracy of our software by simulating genomes onto diverse family pedigree structures, showing that the estimated kinship coefficients closely approximated expected values.

Conclusions: py_ped_sim is a user-friendly and open-source solution for simulating pedigree structures and conducting pedigree genome simulations. It empowers medical, forensic, and evolutionary genetics researchers to gain deeper insights into the dynamics of genetic inheritance and relatedness within families.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10996500PMC
http://dx.doi.org/10.1101/2024.03.25.586501DOI Listing

Publication Analysis

Top Keywords

pedigree structures
16
family pedigree
12
pedigree
9
genetic simulator
8
structures genomes
8
py_ped_sim
5
genetic
5
py_ped_sim flexible
4
flexible forward
4
forward genetic
4

Similar Publications

Background/objectives: The interphotoreceptor matrix proteoglycans 1 and 2 (IMPG1 and IMPG2) are two interdependent proteoglycans of the interphotoreceptor matrix (IPM). Mutations in IMPG1 or IMPG2 are linked to retinal diseases such as retinitis pigmentosa (RP) and vitelliform macular dystrophy (VMD), yet the specific mutations responsible for each condition remain undefined. This study identifies mutations in IMPG1 and IMPG2 linked to either RP or VMD.

View Article and Find Full Text PDF

Objective: To analyze gene mutation found in a pedigree with clinical features and inheritable pattern consistent with amelogenesis imperfecta (AI) in China, and to study the relationship between its genotype and phenotype.

Methods: Clinical and radiological features were recorded for the affected individuals. Peripheral venous blood samples of the patient and family members were collected for further study, and the genomic DNA was extracted to identify the pathogenic gene.

View Article and Find Full Text PDF

A de novo, mosaic and complex chromosome 21 rearrangement causes APP triplication and familial autosomal dominant early onset Alzheimer disease.

Sci Rep

January 2025

Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Copy number variation (CNV) of the amyloid-β precursor protein gene (APP) is a known cause of autosomal dominant Alzheimer disease (ADAD), but de novo genetic variants causing ADAD are rare. We report a mother and daughter with neuropathologically confirmed definite Alzheimer disease (AD) and extensive cerebral amyloid angiopathy (CAA). Copy number analysis identified an increased number of APP copies and genome sequencing (GS) revealed the underlying complex genomic rearrangement (CGR) including a triplication of APP with two unique breakpoint junctions (BPJs).

View Article and Find Full Text PDF

Genetic analysis of a pedigree with hereditary coagulation factor XII deficiency.

Ann Hematol

January 2025

Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.

Analyze the clinical phenotype and gene mutations of a family with hereditary FXII deficiency, and preliminarily explore its phenotypic manifestations. The routine coagulation indicators and related coagulation factors were measured.Thromboelastography and thrombin generation tests simulated coagulation and anticoagulation states in vitro and in vivo.

View Article and Find Full Text PDF

YHSeqY3000 panel captures all founding lineages in the Chinese paternal genomic diversity database.

BMC Biol

January 2025

Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China.

Background: The advancements in second-/third-generation sequencing technologies, alongside computational innovations, have significantly enhanced our understanding of the genomic structure of Y-chromosomes and their unique phylogenetic characteristics. These researches, despite the challenges posed by the lack of population-scale genomic databases, have the potential to revolutionize our approach to high-resolution, population-specific Y-chromosome panels and databases for anthropological and forensic applications.

Objectives: This study aimed to develop the highest-resolution Y-targeted sequencing panel, utilizing time-stamped, core phylogenetic informative mutations identified from high-coverage sequences in the YanHuang cohort.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!