AI Article Synopsis

Article Abstract

Purpose: Retrospective frequency-and-phase correction (FPC) methods attempt to remove frequency-and-phase variations between transients to improve the quality of the averaged MR spectrum. However, traditional FPC methods like spectral registration struggle at low SNR. Here, we propose a method that directly integrates FPC into a two-dimensional linear-combination model (2D-LCM) of individual transients ('model-based FPC'). We investigated how model-based FPC performs compared to the traditional approach, i.e., spectral registration followed by 1D-LCM in estimating frequency-and-phase drifts and, consequentially, metabolite level estimates.

Methods: We created synthetic in-vivo-like 64-transient short-TE sLASER datasets with 100 noise realizations at 5 SNR levels and added randomly sampled frequency and phase variations. We then used this synthetic dataset to compare the performance of 2D-LCM with the traditional approach (spectral registration, averaging, then 1D-LCM). Outcome measures were the frequency/phase/amplitude errors, the standard deviation of those ground-truth errors, and amplitude Cramér Rao Lower Bounds (CRLBs). We further tested the proposed method on publicly available in-vivo short-TE PRESS data.

Results: 2D-LCM estimates (and accounts for) frequency-and-phase variations directly from uncorrected data with equivalent or better fidelity than the conventional approach. Furthermore, 2D-LCM metabolite amplitude estimates were at least as accurate, precise, and certain as the conventionally derived estimates. 2D-LCM estimation of frequency and phase correction and amplitudes performed substantially better at low-to-very-low SNR.

Conclusion: Model-based FPC with 2D linear-combination modeling is feasible and has great potential to improve metabolite level estimation for conventional and dynamic MRS data, especially for low-SNR conditions, e.g., long TEs or strong diffusion weighting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10996641PMC
http://dx.doi.org/10.1101/2024.03.26.586804DOI Listing

Publication Analysis

Top Keywords

spectral registration
12
frequency-and-phase correction
8
linear-combination modeling
8
fpc methods
8
frequency-and-phase variations
8
model-based fpc
8
traditional approach
8
approach spectral
8
metabolite level
8
frequency phase
8

Similar Publications

Background: In children, monitoring depth of anesthesia is challenging because of the still developing brain. Electroencephalographic density spectral array monitoring provides age- and anesthetic drug-specific electroencephalographic patterns, making it suitable for use in children. Yet, not much is known about the benefits of using density spectral array on post-operative recovery in children.

View Article and Find Full Text PDF

Purpose: With the widespread introduction of dual energy computed tomography (DECT), applications utilizing the spectral information to perform material decomposition became available. Among these, a popular application is to decompose contrast-enhanced CT images into virtual non-contrast (VNC) or virtual non-iodine images and into iodine maps. In 2021, photon-counting CT (PCCT) was introduced, which is another spectral CT modality.

View Article and Find Full Text PDF

Background: Oral microenvironmental disorders are associated with an increased risk of heart failure with preserved ejection fraction (HFpEF). Hyperspectral imaging (HSI) technology enables the detection of substances that are visually indistinguishable to the human eye, providing a noninvasive approach with extensive applications in medical diagnostics.

Objective: The objective of this study is to develop and validate a digital, noninvasive oral diagnostic model for patients with HFpEF using HSI combined with various machine learning algorithms.

View Article and Find Full Text PDF

Multi-modal systems extract information about the environment using specialized sensors that are optimized based on the wavelength of the phenomenology and material interactions. To maximize the entropy, complementary systems operating in regions of non-overlapping wavelengths are optimal. VIS-IR (Visible-Infrared) systems have been at the forefront of multi-modal fusion research and are used extensively to represent information in all-day all-weather applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!